[1] | Aubin, T., Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math., 102, 1, 63-95 (1978) ·Zbl 0374.53022 |
[2] | Berman, R. J., Bergman kernels and equilibrium measures for line bundles over projective manifolds, Amer. J. Math., 131, 5, 1485-1524 (2009) ·Zbl 1191.32008 |
[3] | Berman, R. J. |
[4] | Berman, R. J., K-polystability ofℚ-Fano varieties admitting Kähler-Einstein metrics, Invent. Math., 203, 3, 973-1025 (2016) ·Zbl 1353.14051 |
[5] | Berman, R. J.; Boucksom, S.; Jonsson, M. |
[6] | Berman, R. J.; Demailly, J.-P.; Itenberg, I.; Jöricke, B.; Passare, M., Regularity of plurisubharmonic upper envelopes in big cohomology classes, Perspectives in Analysis, Geometry, and Topology, 296, 39-66 (2012), New York: Birkhuser/Springer, New York ·Zbl 1258.32010 |
[7] | Błocki, Z., A gradient estimate in the Calabi-Yau theorem, Math. Ann., 344, 2, 317-327 (2009) ·Zbl 1167.32023 |
[8] | Błocki, Z.; Janeczko, S.; Li, J.; Phong, D. H., On geodesics in the space of Kähler metrics, Advances in Geometric Analysis, 21, 3-19 (2012), Somerville, MA: Int, Somerville, MA ·Zbl 1329.32009 |
[9] | Boucksom, S.; Guedj, V., Monge-Ampère equations on complex manifolds with boundary, 2038, 257-282 (2012), Heidelberg: Springer, Heidelberg ·Zbl 1231.32025 |
[10] | Boucksom, S.; Eyssidieux, P.; Guedj, V.; Zeriahi, A., Monge-Ampère equations in big cohomology classes, Acta Math., 205, 2, 199-262 (2010) ·Zbl 1213.32025 |
[11] | Boucksom, S.; Hisamoto, T.; Jonsson, M., Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs, Ann. Inst. Fourier (Grenoble), 67, 2, 743-841 (2017) ·Zbl 1391.14090 |
[12] | Boucksom, S.; Hisamoto, T.; Jonsson, M., Uniform K-stability and asymptotics of energy functionals in Kähler geometry, J. Eur. Math. Soc. (JEMS) ·Zbl 1478.53115 |
[13] | Caffarelli, L.; Kohn, J. J.; Nirenberg, L.; Spruck, J., The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equations, Commun. Pure Appl. Math., 38, 2, 209-252 (1985) ·Zbl 0598.35048 |
[14] | Chen, X. X., The space of Kähler metrics, J. Differential Geom., 56, 2, 189-234 (2000) ·Zbl 1041.58003 |
[15] | Chen, X. X.; Tang, Y.; Hijazi, O., Test configuration and geodesic rays, Géométrie différentielle, physique mathématique, mathématiques et société. I., 139-167 (2008) ·Zbl 1181.53058 |
[16] | Chu, J.; Tosatti, V.; Weinkove, B., The Monge-Ampère equation for non-integrable almost complex structures, J. Eur. Math. Soc. (JEMS) ·Zbl 1452.32035 |
[17] | Chu, J.; Tosatti, V.; Weinkove, B., On the \(C^{1,1}\) regularity of geodesics in the space of Kähler metrics, Ann. PDE, 3, 2 (2017) ·Zbl 1397.35050 |
[18] | Chu, J.; Zhou, B., Optimal regularity of plurisubharmonic envelopes on compact Hermitian manifolds, Sci. China Math., 61 (2018) ·Zbl 1409.32029 ·doi:10.1007/s11425-017-9173-0 |
[19] | Collins, T. C.; Tosatti, V., Kähler currents and null loci, Invent. Math., 202, 3, 1167-1198 (2015) ·Zbl 1341.32016 |
[20] | Darvas, T., Weak geodesic rays in the space of Kähler potentials and the classℰ(X,ω), J. Inst. Math. Jussieu, 16, 4, 837-858 (2017) ·Zbl 1377.53092 |
[21] | Darvas, T.; He, W., Geodesic rays and Kähler-Ricci trajectories on Fano manifolds, Trans. Amer. Math. Soc., 369, 7, 5069-5085 (2017) ·Zbl 1366.53052 |
[22] | Darvas, T.; Rubinstein, Y. A., Kiselman’s principle, the Dirichlet problem for the Monge-Ampére equation, and rooftop obstacle problems, J. Math. Soc. Japan, 68, 2, 773-796 (2016) ·Zbl 1353.32039 |
[23] | Darvas, T.; Rubinstein, Y. A., Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics, J. Amer. Math. Soc., 30, 2, 347-387 (2017) ·Zbl 1386.32021 |
[24] | Demailly, J.-P., Regularization of closed positive currents and intersection theory, J. Algebraic Geom., 1, 3, 361-409 (1992) ·Zbl 0777.32016 |
[25] | Demailly, J.-P., Singular Hermitian metrics on positive line bundles, Complex Algebraic Varieties (Bayreuth, 1990), 1507, 87-104 (1992), Berlin: Springer, Berlin ·Zbl 0784.32024 |
[26] | Demailly, J.-P., Regularization of closed positive currents of type (1,1) by the flow of a Chern connection, Contributions to Complex Analysis and Analytic Geometry, E26, 105-126 (1994), Braunschweig: Friedr. Vieweg, Braunschweig ·Zbl 0824.53064 |
[27] | Demailly, J.-P.; Păun, M., Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. Math., 159, 3, 1247-1274 (2004) ·Zbl 1064.32019 |
[28] | Dervan, R.; Ross, J., K-stability for Kähler manifold, Math. Res. Lett., 24, 3, 689-739 (2017) ·Zbl 1390.32021 |
[29] | Donaldson, S. K., Scalar curvature and stability of toric varieties, J. Differential Geom., 62, 2, 289-349 (2002) ·Zbl 1074.53059 |
[30] | Guan, B., The Dirichlet problem for complex Monge-Ampère equations and regularity of the pluri-complex Green function, Commun. Anal. Geom., 6, 4, 687-703 (1998) ·Zbl 0923.31005 |
[31] | Lee, K., The obstacle problem for Monge-Ampère equation, Commun. Partial Differential Equations, 26, 1-2, 33-42 (2001) ·Zbl 0982.35039 |
[32] | Phong, D. H.; Sturm, J., The Monge-Ampère operator and geodesics in the space of Kähler potentials, Invent. Math., 166, 1, 125-149 (2006) ·Zbl 1120.32026 |
[33] | Phong, D. H.; Sturm, J., Test configurations for K-stability and geodesic rays, J. Symplectic Geom., 5, 2, 221-247 (2007) ·Zbl 1193.53104 |
[34] | Phong, D. H.; Sturm, J., The Dirichlet problem for degenerate complex Monge-Ampère equations, Commun. Anal. Geom., 18, 1, 145-170 (2010) ·Zbl 1222.32044 |
[35] | Phong, D. H.; Sturm, J., Regularity of geodesic rays and Monge-Ampère equations, Proc. Amer. Math. Soc., 138, 10, 3637-3650 (2010) ·Zbl 1205.31004 |
[36] | Ross, J., Witt Nyström, D. Analytic test configurations and geodesic rays, J. Symplectic Geom., 12, 1, 125-169 (2014) ·Zbl 1300.32021 |
[37] | Ross, J.; Witt Nyström, D., Harmonic discs of solutions to the complex homogeneous Monge-Ampère equation, Publ. Math. Inst. Hautes Études Sci., 122, 315-335 (2015) ·Zbl 1333.32041 |
[38] | Ross, J.; Witt Nyström, D. |
[39] | Ross, J.; Witt Nyström, D., The Dirichlet problem for the complex homogeneous Monge-Ampère equation, Proc. Symp. Pure Math. ·Zbl 1412.32029 |
[40] | Sjöström Dyrefelt, Z., K-semistability of cscK manifolds with transcendental cohomology class, J. Geom. Anal. (2017) ·Zbl 1409.32017 ·doi:10.1007/s12220-017-9942-9 |
[41] | Song, J.; Zelditch, S., Test configurations, large deviations and geodesic rays on toric varieties, Adv. Math., 229, 4, 2338-2378 (2012) ·Zbl 1266.14042 |
[42] | Székelyhidi, G., Fully non-linear elliptic equations on compact Hermitian manifolds, J. Differential Geom. ·Zbl 1409.53062 |
[43] | Székelyhidi, G.; Tosatti, V.; Weinkove, B., Gauduchon metrics with prescribed volume form, Acta Math., 219, 1, 181-211 (2017) ·Zbl 1396.32010 |
[44] | Tosatti, V., Regularity of envelopes in Kähler classes, Math. Res. Lett. ·Zbl 1397.32005 |
[45] | Yau, S.-T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Commun. Pure Appl. Math., 31, 3, 339-411 (1978) ·Zbl 0369.53059 |