Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

\(C^{1,1}\) regularity for degenerate complex Monge-Ampère equations and geodesic rays.(English)Zbl 1404.32075

The authors prove a regularity result for the solution to the Dirichlet problem for the homogeneous complex Monge-Ampère equation on a compact Kähler manifold with boundary and in a degenerate cohomology class. The precise setting is as follows. Let \(M\) be a compact Kähler manifold of dimension \(n\) with smooth boundary \(\partial M\) and let \(\omega_0\) be a smooth semipositive closed \((1,1)\)-form on \(M\). Assume further that \(\partial M\) is weakly pseudoconcave and that there exists an effective divisor \(E\subset M\) disjoint from \(\partial M\) such that \(\omega_0-\delta c_1(\mathcal O(E),h)\) is a Kähler form on \(M\), for all sufficiently small \(\delta>0\) and some Hermitian metric \(h\) on the line bundle \(\mathcal O(E)\) associated to \(E\). Let \(\varphi_0\) be a smooth function on \(M\) such that \(\omega_0+i\partial\overline\partial\varphi_0\geq0\). Let \(\varphi\) be the unique \(\omega_0\)-plurisubharmonic (psh) function such that \((\omega_0+i\partial\overline\partial\varphi)^n=0\) on \(M\), \(\varphi=\varphi_0\) on \(\partial M\), which exists by a standard envelope construction (Perron method). Under these assumptions it is shown in Theorem 1.1 that \(\varphi\in C_{\mathrm{loc}}^{1,1}(M\setminus E)\). This improves a result ofD. H. Phong andJ. Sturm who showed that \(\varphi\in C_{\mathrm{loc}}^{1,\alpha}(M\setminus E)\) for all \(0<\alpha<1\) [Commun. Anal. Geom. 18, No. 1, 145–170 (2010;Zbl 1222.32044)] (see also [S. Boucksom, Lect. Notes Math. 2038, 257–282 (2012;Zbl 1231.32025)]).
The authors apply the above result to prove the local \(C^{1,1}\) regularity of geodesic rays in the space of Kähler metrics associated to a test configuration (Theorem 1.2). They also use it to study the regularity of the \(\alpha\)-psh envelope \[u=\sup\{\varphi:\,\varphi\in \operatorname{PSH}(M,\alpha),\,\varphi\leq0\}\,,\] where \([\alpha]\) is a big and nef \((1,1)\)-class on a compact Kähler manifold \((M,\omega)\). They show that \(u\) is locally \(C^{1,1}\) away from the non-Kähler locus of \([\alpha]\), extending earlier results ofR. J. Berman [Am. J. Math. 131, No. 5, 1485–1524 (2009;Zbl 1191.32008)] andR. Berman andJ.-P. Demailly [Prog. Math. 296, 39–66 (2012;Zbl 1258.32010)].

MSC:

32W20 Complex Monge-Ampère operators
35J96 Monge-Ampère equations
32Q15 Kähler manifolds
53C55 Global differential geometry of Hermitian and Kählerian manifolds

Cite

References:

[1]Aubin, T., Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math., 102, 1, 63-95 (1978) ·Zbl 0374.53022
[2]Berman, R. J., Bergman kernels and equilibrium measures for line bundles over projective manifolds, Amer. J. Math., 131, 5, 1485-1524 (2009) ·Zbl 1191.32008
[3]Berman, R. J.
[4]Berman, R. J., K-polystability of-Fano varieties admitting Kähler-Einstein metrics, Invent. Math., 203, 3, 973-1025 (2016) ·Zbl 1353.14051
[5]Berman, R. J.; Boucksom, S.; Jonsson, M.
[6]Berman, R. J.; Demailly, J.-P.; Itenberg, I.; Jöricke, B.; Passare, M., Regularity of plurisubharmonic upper envelopes in big cohomology classes, Perspectives in Analysis, Geometry, and Topology, 296, 39-66 (2012), New York: Birkhuser/Springer, New York ·Zbl 1258.32010
[7]Błocki, Z., A gradient estimate in the Calabi-Yau theorem, Math. Ann., 344, 2, 317-327 (2009) ·Zbl 1167.32023
[8]Błocki, Z.; Janeczko, S.; Li, J.; Phong, D. H., On geodesics in the space of Kähler metrics, Advances in Geometric Analysis, 21, 3-19 (2012), Somerville, MA: Int, Somerville, MA ·Zbl 1329.32009
[9]Boucksom, S.; Guedj, V., Monge-Ampère equations on complex manifolds with boundary, 2038, 257-282 (2012), Heidelberg: Springer, Heidelberg ·Zbl 1231.32025
[10]Boucksom, S.; Eyssidieux, P.; Guedj, V.; Zeriahi, A., Monge-Ampère equations in big cohomology classes, Acta Math., 205, 2, 199-262 (2010) ·Zbl 1213.32025
[11]Boucksom, S.; Hisamoto, T.; Jonsson, M., Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs, Ann. Inst. Fourier (Grenoble), 67, 2, 743-841 (2017) ·Zbl 1391.14090
[12]Boucksom, S.; Hisamoto, T.; Jonsson, M., Uniform K-stability and asymptotics of energy functionals in Kähler geometry, J. Eur. Math. Soc. (JEMS) ·Zbl 1478.53115
[13]Caffarelli, L.; Kohn, J. J.; Nirenberg, L.; Spruck, J., The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equations, Commun. Pure Appl. Math., 38, 2, 209-252 (1985) ·Zbl 0598.35048
[14]Chen, X. X., The space of Kähler metrics, J. Differential Geom., 56, 2, 189-234 (2000) ·Zbl 1041.58003
[15]Chen, X. X.; Tang, Y.; Hijazi, O., Test configuration and geodesic rays, Géométrie différentielle, physique mathématique, mathématiques et société. I., 139-167 (2008) ·Zbl 1181.53058
[16]Chu, J.; Tosatti, V.; Weinkove, B., The Monge-Ampère equation for non-integrable almost complex structures, J. Eur. Math. Soc. (JEMS) ·Zbl 1452.32035
[17]Chu, J.; Tosatti, V.; Weinkove, B., On the \(C^{1,1}\) regularity of geodesics in the space of Kähler metrics, Ann. PDE, 3, 2 (2017) ·Zbl 1397.35050
[18]Chu, J.; Zhou, B., Optimal regularity of plurisubharmonic envelopes on compact Hermitian manifolds, Sci. China Math., 61 (2018) ·Zbl 1409.32029 ·doi:10.1007/s11425-017-9173-0
[19]Collins, T. C.; Tosatti, V., Kähler currents and null loci, Invent. Math., 202, 3, 1167-1198 (2015) ·Zbl 1341.32016
[20]Darvas, T., Weak geodesic rays in the space of Kähler potentials and the classℰ(X,ω), J. Inst. Math. Jussieu, 16, 4, 837-858 (2017) ·Zbl 1377.53092
[21]Darvas, T.; He, W., Geodesic rays and Kähler-Ricci trajectories on Fano manifolds, Trans. Amer. Math. Soc., 369, 7, 5069-5085 (2017) ·Zbl 1366.53052
[22]Darvas, T.; Rubinstein, Y. A., Kiselman’s principle, the Dirichlet problem for the Monge-Ampére equation, and rooftop obstacle problems, J. Math. Soc. Japan, 68, 2, 773-796 (2016) ·Zbl 1353.32039
[23]Darvas, T.; Rubinstein, Y. A., Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics, J. Amer. Math. Soc., 30, 2, 347-387 (2017) ·Zbl 1386.32021
[24]Demailly, J.-P., Regularization of closed positive currents and intersection theory, J. Algebraic Geom., 1, 3, 361-409 (1992) ·Zbl 0777.32016
[25]Demailly, J.-P., Singular Hermitian metrics on positive line bundles, Complex Algebraic Varieties (Bayreuth, 1990), 1507, 87-104 (1992), Berlin: Springer, Berlin ·Zbl 0784.32024
[26]Demailly, J.-P., Regularization of closed positive currents of type (1,1) by the flow of a Chern connection, Contributions to Complex Analysis and Analytic Geometry, E26, 105-126 (1994), Braunschweig: Friedr. Vieweg, Braunschweig ·Zbl 0824.53064
[27]Demailly, J.-P.; Păun, M., Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. Math., 159, 3, 1247-1274 (2004) ·Zbl 1064.32019
[28]Dervan, R.; Ross, J., K-stability for Kähler manifold, Math. Res. Lett., 24, 3, 689-739 (2017) ·Zbl 1390.32021
[29]Donaldson, S. K., Scalar curvature and stability of toric varieties, J. Differential Geom., 62, 2, 289-349 (2002) ·Zbl 1074.53059
[30]Guan, B., The Dirichlet problem for complex Monge-Ampère equations and regularity of the pluri-complex Green function, Commun. Anal. Geom., 6, 4, 687-703 (1998) ·Zbl 0923.31005
[31]Lee, K., The obstacle problem for Monge-Ampère equation, Commun. Partial Differential Equations, 26, 1-2, 33-42 (2001) ·Zbl 0982.35039
[32]Phong, D. H.; Sturm, J., The Monge-Ampère operator and geodesics in the space of Kähler potentials, Invent. Math., 166, 1, 125-149 (2006) ·Zbl 1120.32026
[33]Phong, D. H.; Sturm, J., Test configurations for K-stability and geodesic rays, J. Symplectic Geom., 5, 2, 221-247 (2007) ·Zbl 1193.53104
[34]Phong, D. H.; Sturm, J., The Dirichlet problem for degenerate complex Monge-Ampère equations, Commun. Anal. Geom., 18, 1, 145-170 (2010) ·Zbl 1222.32044
[35]Phong, D. H.; Sturm, J., Regularity of geodesic rays and Monge-Ampère equations, Proc. Amer. Math. Soc., 138, 10, 3637-3650 (2010) ·Zbl 1205.31004
[36]Ross, J., Witt Nyström, D. Analytic test configurations and geodesic rays, J. Symplectic Geom., 12, 1, 125-169 (2014) ·Zbl 1300.32021
[37]Ross, J.; Witt Nyström, D., Harmonic discs of solutions to the complex homogeneous Monge-Ampère equation, Publ. Math. Inst. Hautes Études Sci., 122, 315-335 (2015) ·Zbl 1333.32041
[38]Ross, J.; Witt Nyström, D.
[39]Ross, J.; Witt Nyström, D., The Dirichlet problem for the complex homogeneous Monge-Ampère equation, Proc. Symp. Pure Math. ·Zbl 1412.32029
[40]Sjöström Dyrefelt, Z., K-semistability of cscK manifolds with transcendental cohomology class, J. Geom. Anal. (2017) ·Zbl 1409.32017 ·doi:10.1007/s12220-017-9942-9
[41]Song, J.; Zelditch, S., Test configurations, large deviations and geodesic rays on toric varieties, Adv. Math., 229, 4, 2338-2378 (2012) ·Zbl 1266.14042
[42]Székelyhidi, G., Fully non-linear elliptic equations on compact Hermitian manifolds, J. Differential Geom. ·Zbl 1409.53062
[43]Székelyhidi, G.; Tosatti, V.; Weinkove, B., Gauduchon metrics with prescribed volume form, Acta Math., 219, 1, 181-211 (2017) ·Zbl 1396.32010
[44]Tosatti, V., Regularity of envelopes in Kähler classes, Math. Res. Lett. ·Zbl 1397.32005
[45]Yau, S.-T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Commun. Pure Appl. Math., 31, 3, 339-411 (1978) ·Zbl 0369.53059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp