11J83 | Metric theory |
28A78 | Hausdorff and packing measures |
11J13 | Simultaneous homogeneous approximation, linear forms |
[1] | Beresnevich, V., Bernik, V., Dodson, M. and Velani, S.,Classical metric Diophantine approximation revisited, in Analytic number theory (Cambridge University Press, Cambridge, 2009), 38-61. ·Zbl 1236.11064 |
[2] | Beresnevich, V., Dickinson, D. and Velani, S.,Measure theoretic laws for lim sup sets, Mem. Amer. Math. Soc.179(846) (2006). ·Zbl 1129.11031 |
[3] | Beresnevich, V. and Velani, S.,A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Ann. of Math. (2)164 (2006), 971-992. doi:10.4007/annals.2006.164.971 ·Zbl 1148.11033 |
[4] | Beresnevich, V. and Velani, S.,Schmidt’s theorem, Hausdorff measures, and slicing, Int. Math. Res. Not. IMRN2006 (2006), Art. ID 48794, 24 pp. ·Zbl 1111.11037 |
[5] | Beresnevich, V. and Velani, S.,A note on zero-one laws in metrical Diophantine approximation, Acta Arith.133 (2008), 363-374. doi:10.4064/aa133-4-5 ·Zbl 1229.11102 |
[6] | Beresnevich, V. and Velani, S.,Classical metric Diophantine approximation revisited: the Khintchine-Groshev theorem, Int. Math. Res. Not. IMRN2010 (2010), 69-86. ·Zbl 1241.11086 |
[7] | Dani, S. G., Laurent, M. and Nogueira, A.,Multi-dimensional metric approximation by primitive points, Math. Z.279 (2015), 1081-1101. doi:10.1007/s00209-014-1404-5 ·Zbl 1311.11062 |
[8] | Dickinson, H., The Hausdorff dimension of systems of simultaneously small linear forms, Mathematika, 40, 367-374, (1993) ·Zbl 0793.11019 ·doi:10.1112/S0025579300007129 |
[9] | Dickinson, D. and Hussain, M.,The metric theory of mixed type linear forms, Int. J. Number Theory9 (2013), 77-90. doi:10.1142/S1793042112501278 ·Zbl 1269.11067 |
[10] | Dickinson, D. and Velani, S.,Hausdorff measure and linear forms, J. Reine Angew. Math.490 (1997), 1-36. ·Zbl 0880.11058 |
[11] | Duffin, R. J. and Schaeffer, A. C.,Khintchine’s problem in metric Diophantine approximation, Duke Math. J.8 (1941), 243-255. doi:10.1215/S0012-7094-41-00818-9 ·Zbl 0025.11002 |
[12] | Falconer, K., Fractal geometry: mathematical foundations and applications, second edition (Wiley, 2003). doi:10.1002/0470013850 ·Zbl 1060.28005 |
[13] | Hussain, M. and Kristensen, S.,Metrical results on systems of small linear forms, Int. J. Number Theory9 (2013), 769-782. doi:10.1142/S1793042112501606 ·Zbl 1311.11074 |
[14] | Hussain, M. and Levesley, J.,The metrical theory of simultaneously small linear forms, Funct. Approx. Comment. Math.48 (2013), 167-181. doi:10.7169/facm/2013.48.2.1 ·Zbl 1311.11075 |
[15] | Khintchine, A. Ya., Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen, Math. Ann., 92, 115-125, (1924) ·JFM 50.0125.01 ·doi:10.1007/BF01448437 |
[16] | Mattila, P., Geometry of sets and measures in Euclidean spaces, (1995), Cambridge University Press: Cambridge University Press, Cambridge ·Zbl 0819.28004 ·doi:10.1017/CBO9780511623813 |
[17] | Ramírez, F., Counterexamples, covering systems, and zero-one laws for inhomogeneous approximation, Int. J. Number Theory, 13, 633-654, (2017) ·Zbl 1367.11063 ·doi:10.1142/S1793042117500324 |
[18] | Sprindžuk, V. G., Metric theory of Diophantine approximations (V. H. Winston & Sons, Washington, DC, 1979), translated by R. A. Silverman. ·Zbl 0482.10047 |
[19] | Wang, B., Wu, J. and Xu, J.,Mass transference principle for lim sup sets generated by rectangles, Math. Proc. Cambridge Philos. Soc.158 (2015), 419-437. doi:10.1017/S0305004115000043 ·Zbl 1371.11119 |