Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Quasi-positive families of continuous Darcy-flux finite volume schemes on structured and unstructured grids.(English)Zbl 1402.76078

Summary: New families of flux-continuous control-volume distributed finite volume schemes are presented for the general full-tensor pressure equation arising in porous media and formulated for structured and unstructured grids. These schemes offer the practical advantage of being flux-continuous while only depending on one degree of freedom per control-volume, unlike rival approximations such as the Mixed Finite Element method. \(M\)-matrix bounds are presented, quasi QM-matrices are defined and an optimal quadrilateral scheme is identified. Anisotropy favoring triangulation is also shown to yield an optimal scheme. The new schemes prove to be relatively robust for the cases tested, including strongly anisotropic full tensor fields. Strong oscillations encountered with the earlier formulations, are removed or minimized.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65N08 Finite volume methods for boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage

Cite

References:

[1]Edwards, M. G.; Rogers, C. F., Finite volume discretization with imposed flux continuity for the general tensor pressure equation, Comput. Geom., 2, 259-290 (1998) ·Zbl 0945.76049
[3]Edwards, M. G.; Pal, M., Positive definite q-families of continuous subcell darcy-flux cvd(mpfa) finite volume schemes and the mixed finite element method, Internat. J. Numer. Methods Fluids, 57, 355-387 (2008) ·Zbl 1236.76035
[5]Aavatsmark, I., Introduction to multipoint flux approximation for quadrilateral grids, Comput. Geom., 6, 405-432 (2002) ·Zbl 1094.76550
[6]Lee, S. H.; Jenny, P.; Tchelepi, H. A., A finite-volume method with hexahedral multiblock grids for modeling flow in porous media, Comput. Geom., 6, 353-379 (2002) ·Zbl 1094.76541
[7]Wheeler, M. F.; Yotov, I., A multipoint flux mixed finite element method, SIAM J. Numer. Anal., 44, 2082-2106 (2006) ·Zbl 1121.76040
[8]Edwards, M. G., Higher-resolution hyperbolic - coupled - elliptic flux-continuous cvd schemes on structured and unstructured grids in 3-d, Int. J. Numer. Methods Fluids, 51, 1079-1095 (2006) ·Zbl 1158.76364
[9]Raviart, R. A.; Thomas, J. M., A mixed finite element method for second order problems, (Mathematical Aspects of the Finite Element Method. Mathematical Aspects of the Finite Element Method, Lectures Notes in Math., vol. 606 (1977)), 292-315 ·Zbl 0362.65089
[10]Edwards, M. G.; Zheng, H., A quasi-positive family of continuous darcy-flux finite volume schemes with full pressure support, J. Comput. Phys., 227, 22, 9333-9364 (2008) ·Zbl 1231.76178
[12]Aavatsmark, I.; Eigestad, G. T.; Mallison, B. T.; Nordbotten, J. M., A compact multipoint flux approximation method with improved robustness, Numer. Methods Partial Diff. Eqns, 25, 5, 1329-1360 (2008) ·Zbl 1230.65114
[13]Le Potier, C., Schema volume finis pour des operator operateurs de diffusion fortement anisotropes sur des maillages de triangle nonstructures, C. R., Math. Acad. Sci. Paris, Ser. I., 340, 921-926 (2005) ·Zbl 1076.76049
[14]Lipnikov, K.; Shashkov, M.; Svyatskiy, D.; Vassilevski, Yu., Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes, J. Comput. Phys., 227, 492-512 (2008) ·Zbl 1130.65113
[15]Edwards, M. G., Unstructured, control-volume distributed, full-tensor finite volume schemes with flow based grids, Comput. Geom., 6, 3-4, 433-452 (2002) ·Zbl 1036.76034
[16]Edwards, M. G., \(M\)-matrix flux splitting for general full tensor discretization operators on structured and unstructured grids, J. Comput. Phys., 160, 1-28 (2000) ·Zbl 0983.76055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp