[1] | D. Kalman, R. Mena, The Fibonacci numbers-exposed. Math. Mag. 76, 167–181 (2003) ·Zbl 1048.11014 ·doi:10.2307/3219318 |
[2] | J.B. Muskat, Generalized Fibonacci and Lucas sequences and rootfinding methods. Math. Comput. 61, 365–372 (1993) ·Zbl 0781.11006 ·doi:10.1090/S0025-5718-1993-1192974-3 |
[3] | S. Rabinowitz, Algorithmic manipulation of Fibonacci identities. Appl Fibonacci Number 6, 389–408 (1996) ·Zbl 0851.11010 ·doi:10.1007/978-94-009-0223-7_33 |
[4] | P. Ribenboim, My Numbers, My Friends (Springer, New York, 2000) |
[5] | P. Ribenboim, W.L. McDaniel, The square terms in Lucas sequences. J. Number Theory 58, 104–123 (1996) ·Zbl 0851.11011 ·doi:10.1006/jnth.1996.0068 |
[6] | Z. Şiar, R. Keskin, The square terms in generalized Fibonacci sequence. Mathematika 60, 85–100 (2014) ·Zbl 1372.11018 ·doi:10.1112/S0025579313000193 |
[7] | R. Keskin, O. Karaatlı, Generalized Fibonacci and Lucas numbers of the form \(5x^{2}\) 5 x 2 . Int. J. Number. Theory 11(3), 931–944 (2015) ·Zbl 1379.11015 ·doi:10.1142/S1793042115500517 |
[8] | M.A. Alekseyev, S. Tengely, On integral points on biquadratic curves and near-multiples of squares in Lucas sequences. J. Integer Seq. 17, no. 6, Article ID 14.6.6, (2014) ·Zbl 1358.11141 |
[9] | R. Keskin, Generalized Fibonacci and Lucas numbers of the form \(wx^{2}\) w x 2 and \(wx^{2}\pm 1\) w x 2 {\(\pm\)} 1 . Bull. Korean Math. Soc. 51, 1041–1054 (2014) ·Zbl 1375.11016 ·doi:10.4134/BKMS.2014.51.4.1041 |
[10] | O. Karaatlı, R. Keskin, Generalized Lucas Numbers of the form \(5kx^{2}\) 5 k x 2 and \(7kx^{2}\) 7 k x 2 . Bull. Korean Math. Soc. 52(5), 1467–1480 (2015) ·Zbl 1395.11032 |
[11] | M.A. Bennett, S. Dahmen, M. Mignotte, S. Siksek, Shifted powers in binary recurrence sequences. Math. Proc. Camb. Philos. Soc. 158(2), 305–329 (2015) ·Zbl 1371.11081 ·doi:10.1017/S0305004114000681 |
[12] | Y. Bugeaud, F. Luca, M. Mignotte, S. Siksek, Fibonacci numbers at most one away from a perfect power. Elem. Math. 63(2), 65–75 (2008) ·Zbl 1156.11008 ·doi:10.4171/EM/89 |
[13] | Y. Bugeaud, F. Luca, M. Mignotte, S. Siksek, Almost powers in the Lucas sequence. J. Théor. Nombres Bordx. 20(3), 555–600 (2008) ·Zbl 1204.11030 ·doi:10.5802/jtnb.642 |
[14] | Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers. Ann. Math. 163(3), 969–1018 (2006) ·Zbl 1113.11021 ·doi:10.4007/annals.2006.163.969 |
[15] | J.H.E. Cohn, Squares in some recurrent sequences. Pac. J. Math. 41, 631–646 (1972) ·Zbl 0248.10016 ·doi:10.2140/pjm.1972.41.631 |
[16] | P. Ribenboim, W. L. McDaniel, On Lucas sequence terms of the form \(kx^{2},\) k x 2 , number theory: proceedings of the Turku symposium on Number Theory in memory of Kustaa Inkeri (Turku, 1999), de Gruyter, Berlin, 293–303 (2001) |
[17] | R.T. Bumby, The Diophantine equation \(3x^{4}-2y^{2}=1\) 3 x 4 - 2 y 2 = 1 . Math. Scand. 21, 144–148 (1967) ·Zbl 0169.37402 ·doi:10.7146/math.scand.a-10854 |
[18] | R. Keskin and Z. Şiar, Positive integer solutions of some Diophantine equations in terms of integer sequences (submitted) ·Zbl 1308.11035 |
[19] | J.P. Jones, Representation of solutions of Pell equations using Lucas sequences. Acta Acad. Paedagog. Agriensis Sect. Mat. 30, 75–86 (2003) ·Zbl 1047.11017 |
[20] | R. Keskin, Solutions of some quadratic Diophantine equations. Comput. Math. Appl. 60, 2225–2230 (2010) ·Zbl 1205.11035 ·doi:10.1016/j.camwa.2010.08.012 |
[21] | W.L. McDaniel, Diophantine representation of Lucas sequences. Fibonacci Quart. 33, 58–63 (1995) ·Zbl 0830.11006 |
[22] | R. Melham, Conics which characterize certain Lucas sequences. Fibonacci Quart. 35, 248–251 (1997) ·Zbl 0968.11501 |
[23] | Z. Şiar, R. Keskin, Some new identities concerning generalized Fibonacci and Lucas numbers. Hacet. J. Math. Stat. 42(3), 211–222 (2013) ·Zbl 1298.11016 |
[24] | W.L. McDaniel, The g.c.d. in Lucas sequences and Lehmer number sequences. Fibonacci Quart. 29, 24–30 (1991) ·Zbl 0732.11008 |
[25] | W. Bosma, J. Cannon, C. Playoust, The MAGMA algebra system. I: the user language. J. Symb. Comput. 24(3–4), 235–265 (1997) ·Zbl 0898.68039 ·doi:10.1006/jsco.1996.0125 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.