Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e.g.functions,functorial, etc.). Otherwise the search isexact.
"Topological group"Phrases (multi-words) should be set in"straight quotation marks".
au: Bourbaki & ti: AlgebraSearch forauthor andtitle. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator | allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so: Eur* J* Mat* Soc* cc: 14Search for publications in a particularsource with aMathematics SubjectClassificationcode (cc) in14.
"Partial diff* eq*" ! ellipticThenot-operator! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set to books; alternatively:j forjournal articles,a forbook articles.
py: 2000-2015 cc: (94A | 11T)Numberranges are accepted. Terms can be grouped within(parentheses).
la: chineseFind documents in a givenlanguage.ISO 639-1 language codes can also be used.

Fields

anyanywhere
aninternal document identifier
auauthor, editor
aiinternal author identifier
tititle
lalanguage
sosource
abreview, abstract
pypublication year
rvreviewer
ccMSC code
utuncontrolled term
dtdocument type (j: journal article;b: book;a: book article)

Operators

a& blogic and
a| blogic or
!ablogic not
abc*right wildcard
"ab c"phrase
(ab c)parentheses

See also ourGeneral Help.

Generalized Fibonacci numbers of the form \(wx^2 + 1\).(English)Zbl 1399.11044

Summary: Let \(P \geq 3\) be an integer and let \((U_n)\) and \((V_n)\) denote generalized Fibonacci and Lucas sequences defined by \(U_0 = 0, U_1 = 1; V_0 = 2, V_1 = P\), and \(U_{n+1} = PU_n - U_{n-1}\), \(V_{n+1} = PV_n - V_{n-1}\) for \(n \geq 1\). In this study, when \(P\) is odd, we solve the equation \(U_n = wx^2 +1\) for \(w = 1, 2, 3, 5, 6, 7, 10\). After then, we solve some Diophantine equations utilizing solutions of these equations.

MSC:

11B37 Recurrences
11B39 Fibonacci and Lucas numbers and polynomials and generalizations
11B50 Sequences (mod \(m\))
11B99 Sequences and sets
11D41 Higher degree equations; Fermat’s equation

Software:

Magma

Cite

References:

[1]D. Kalman, R. Mena, The Fibonacci numbers-exposed. Math. Mag. 76, 167–181 (2003) ·Zbl 1048.11014 ·doi:10.2307/3219318
[2]J.B. Muskat, Generalized Fibonacci and Lucas sequences and rootfinding methods. Math. Comput. 61, 365–372 (1993) ·Zbl 0781.11006 ·doi:10.1090/S0025-5718-1993-1192974-3
[3]S. Rabinowitz, Algorithmic manipulation of Fibonacci identities. Appl Fibonacci Number 6, 389–408 (1996) ·Zbl 0851.11010 ·doi:10.1007/978-94-009-0223-7_33
[4]P. Ribenboim, My Numbers, My Friends (Springer, New York, 2000)
[5]P. Ribenboim, W.L. McDaniel, The square terms in Lucas sequences. J. Number Theory 58, 104–123 (1996) ·Zbl 0851.11011 ·doi:10.1006/jnth.1996.0068
[6]Z. Şiar, R. Keskin, The square terms in generalized Fibonacci sequence. Mathematika 60, 85–100 (2014) ·Zbl 1372.11018 ·doi:10.1112/S0025579313000193
[7]R. Keskin, O. Karaatlı, Generalized Fibonacci and Lucas numbers of the form \(5x^{2}\) 5 x 2 . Int. J. Number. Theory 11(3), 931–944 (2015) ·Zbl 1379.11015 ·doi:10.1142/S1793042115500517
[8]M.A. Alekseyev, S. Tengely, On integral points on biquadratic curves and near-multiples of squares in Lucas sequences. J. Integer Seq. 17, no. 6, Article ID 14.6.6, (2014) ·Zbl 1358.11141
[9]R. Keskin, Generalized Fibonacci and Lucas numbers of the form \(wx^{2}\) w x 2 and \(wx^{2}\pm 1\) w x 2 {\(\pm\)} 1 . Bull. Korean Math. Soc. 51, 1041–1054 (2014) ·Zbl 1375.11016 ·doi:10.4134/BKMS.2014.51.4.1041
[10]O. Karaatlı, R. Keskin, Generalized Lucas Numbers of the form \(5kx^{2}\) 5 k x 2 and \(7kx^{2}\) 7 k x 2 . Bull. Korean Math. Soc. 52(5), 1467–1480 (2015) ·Zbl 1395.11032
[11]M.A. Bennett, S. Dahmen, M. Mignotte, S. Siksek, Shifted powers in binary recurrence sequences. Math. Proc. Camb. Philos. Soc. 158(2), 305–329 (2015) ·Zbl 1371.11081 ·doi:10.1017/S0305004114000681
[12]Y. Bugeaud, F. Luca, M. Mignotte, S. Siksek, Fibonacci numbers at most one away from a perfect power. Elem. Math. 63(2), 65–75 (2008) ·Zbl 1156.11008 ·doi:10.4171/EM/89
[13]Y. Bugeaud, F. Luca, M. Mignotte, S. Siksek, Almost powers in the Lucas sequence. J. Théor. Nombres Bordx. 20(3), 555–600 (2008) ·Zbl 1204.11030 ·doi:10.5802/jtnb.642
[14]Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers. Ann. Math. 163(3), 969–1018 (2006) ·Zbl 1113.11021 ·doi:10.4007/annals.2006.163.969
[15]J.H.E. Cohn, Squares in some recurrent sequences. Pac. J. Math. 41, 631–646 (1972) ·Zbl 0248.10016 ·doi:10.2140/pjm.1972.41.631
[16]P. Ribenboim, W. L. McDaniel, On Lucas sequence terms of the form \(kx^{2},\) k x 2 , number theory: proceedings of the Turku symposium on Number Theory in memory of Kustaa Inkeri (Turku, 1999), de Gruyter, Berlin, 293–303 (2001)
[17]R.T. Bumby, The Diophantine equation \(3x^{4}-2y^{2}=1\) 3 x 4 - 2 y 2 = 1 . Math. Scand. 21, 144–148 (1967) ·Zbl 0169.37402 ·doi:10.7146/math.scand.a-10854
[18]R. Keskin and Z. Şiar, Positive integer solutions of some Diophantine equations in terms of integer sequences (submitted) ·Zbl 1308.11035
[19]J.P. Jones, Representation of solutions of Pell equations using Lucas sequences. Acta Acad. Paedagog. Agriensis Sect. Mat. 30, 75–86 (2003) ·Zbl 1047.11017
[20]R. Keskin, Solutions of some quadratic Diophantine equations. Comput. Math. Appl. 60, 2225–2230 (2010) ·Zbl 1205.11035 ·doi:10.1016/j.camwa.2010.08.012
[21]W.L. McDaniel, Diophantine representation of Lucas sequences. Fibonacci Quart. 33, 58–63 (1995) ·Zbl 0830.11006
[22]R. Melham, Conics which characterize certain Lucas sequences. Fibonacci Quart. 35, 248–251 (1997) ·Zbl 0968.11501
[23]Z. Şiar, R. Keskin, Some new identities concerning generalized Fibonacci and Lucas numbers. Hacet. J. Math. Stat. 42(3), 211–222 (2013) ·Zbl 1298.11016
[24]W.L. McDaniel, The g.c.d. in Lucas sequences and Lehmer number sequences. Fibonacci Quart. 29, 24–30 (1991) ·Zbl 0732.11008
[25]W. Bosma, J. Cannon, C. Playoust, The MAGMA algebra system. I: the user language. J. Symb. Comput. 24(3–4), 235–265 (1997) ·Zbl 0898.68039 ·doi:10.1006/jsco.1996.0125
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp