[1] | Abraham, P. H. R.; Delmas, J. F., A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces, Electron. J. Probab., 18, 1-21, 2013 ·Zbl 1285.60004 |
[2] | Ambrosio, L.; Di Marino, S., Equivalent definitions of BV space and of total variation on metric measure spaces, J. Funct. Anal., 266, 4150-4188, 2014 ·Zbl 1302.26012 |
[3] | Ambrosio, L.; Fusco, N.; Pallara, D., Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, 2000, Clarendon Press: Oxford ·Zbl 0957.49001 |
[4] | Ambrosio, L.; Gigli, N., A user’s guide to optimal transport, Modelling and optimisation of flows on networks. Lecture Notes in Mathematics, 1-155, 2013, Springer: Berlin |
[5] | Ambrosio, L.; Gigli, N.; Mondino, A.; Rajala, T., Riemannian Ricci curvature lower bounds in metric measure spaces with \(\sigma \)‐finite measure, Trans. Amer. Math. Soc., 367, 4661-4701, 2015 ·Zbl 1317.53060 |
[6] | Ambrosio, L.; Gigli, N.; Savaré, G., Gradient flows in metric spaces and in the space of probability measures, 2nd edn. Lectures in Mathematics, 2008, ETH Zürich: Birkhäuser ·Zbl 1145.35001 |
[7] | Ambrosio, L.; Gigli, N.; Savaré, G., Heat flow and calculus on metric measure spaces with Ricci curvature bounded below—the compact case, Boll. Unione Mat. Ital. (9), 5, 575-629, 2012 ·Zbl 1288.58016 |
[8] | Ambrosio, L.; Gigli, N.; Savaré, G., Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., 1-103, 2013 |
[9] | Ambrosio, L.; Gigli, N.; Savaré, G., Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, Rev. Mat. Iberoamericana, 29, 969-996, 2013 ·Zbl 1287.46027 |
[10] | Ambrosio, L.; Gigli, N.; Savaré, G., Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163, 1405-1490, 2014 ·Zbl 1304.35310 |
[11] | Ambrosio, L.; Gigli, N.; Savaré, G., Bakry-Émery curvature‐dimension condition and Riemannian Ricci curvature bounds, Ann. Probab., 43, 339-404, 2015 ·Zbl 1307.49044 |
[12] | Ambrosio, L.; Savaré, G.; Zambotti, L., Existence and stability for Fokker-Planck equations with log‐concave reference measure, Probab. Theory Related Fields, 145, 517-564, 2009 ·Zbl 1235.60105 |
[13] | Attouch, H., Variational convergence for functions and operators, 1984, Pitman (Advanced Publishing Program): Boston, MA ·Zbl 0561.49012 |
[14] | Bacher, K.; Sturm, K.‐T., Localization and tensorization properties of the curvature‐dimension condition for metric measure spaces, J. Funct. Anal., 259, 28-56, 2010 ·Zbl 1196.53027 |
[15] | Brézis, H., Opérateurs maximaux monotones et semi‐groupes de contractions dans les espaces de Hilbert, North‐Holland Mathematics Studies 5, Notas de Matemática 50, 1973, North‐Holland Publishing: Amsterdam ·Zbl 0252.47055 |
[16] | Burago, D.; Burago, Y.; Ivanov, S., A course in metric geometry, Graduate Studies in Mathematics 33, 2001, American Mathematical Society: Providence, RI ·Zbl 0981.51016 |
[17] | Cheeger, J.; Colding, T., On the structure of spaces with Ricci curvature bounded below I, J. Differential Geom., 45, 406-480, 1997 ·Zbl 0902.53034 |
[18] | Cheeger, J.; Colding, T., On the structure of spaces with Ricci curvature bounded below II, J. Differential Geom., 54, 13-35, 2000 ·Zbl 1027.53042 |
[19] | Cheeger, J.; Colding, T., On the structure of spaces with Ricci curvature bounded below III, J. Differential Geom., 54, 37-74, 2000 ·Zbl 1027.53043 |
[20] | Cheeger, J.; Tian, G., On the cone structure at infinity of Ricci flat manifolds with euclidean volume growth and quadratic curvature decay, Invent. Math., 118, 493-571, 1994 ·Zbl 0814.53034 |
[21] | Colding, T.; Minicozzi, W. P., On uniqueness of tangent cones for einstein manifolds, Invent. Math., 196, 515-588, 2014 ·Zbl 1302.53048 |
[22] | Colding, T.; Naber, A., Sharp holder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications bound and applications, Ann. of Math., 176, 1173-1229, 2012 ·Zbl 1260.53067 |
[23] | Fang, S.; Shao, J.; Sturm, K.‐T., Wasserstein space over the Wiener space, Probab. Theory Related Fields, 146, 535-565, 2010 ·Zbl 1201.37095 |
[24] | Fukaya, K., Collapsing of Riemannian manifolds and eigenvalues of the Laplace operator, Invent. Math., 87, 517-547, 1987 ·Zbl 0589.58034 |
[25] | Gigli, N., On the heat flow on metric measure spaces: existence, uniqueness and stability, Calc. Var. Partial Differential Equations, 39, 101-120, 2010 ·Zbl 1200.35178 |
[26] | Gigli, N. |
[27] | Gigli, N.; Ledoux, M., From log Sobolev to Talagrand: a quick proof, Discrete Contin. Dyn. Syst., 33, 1927-1935, 2013 ·Zbl 1268.60023 |
[28] | Gigli, N.; Mondino, A.; Rajala, T., Euclidean spaces as weak tangents of infinitesimally Hilbertian metric spaces with Ricci curvature bounded below, J. Reine Angew. Math., 705, 233-244, 2015 ·Zbl 1323.53038 |
[29] | Greven, A.; Pfaffelhuber, P.; Winter, A., Convergence in distribution of random metric measure spaces, Probab. Theory Related Fields, 145, 285-322, 2009 ·Zbl 1215.05161 |
[30] | Gromov, M., Metric structures for Riemannian and non‐Riemannian spaces, Modern Birkhäuser Classics, 2007, Birkhäuser Boston: Boston, MA ·Zbl 1113.53001 |
[31] | Jordan, R.; Kinderlehrer, D.; Otto, F., The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29, 1-17, 1998 ·Zbl 0915.35120 |
[32] | Kuwae, K.; Shioya, T., Convergence of spectral structures: a functional analytic theory and its applications to spectral geometry, Comm. Anal. Geom., 11, 599-673, 2003 ·Zbl 1092.53026 |
[33] | Lisini, S., Characterization of absolutely continuous curves in Wasserstein spaces, Calc. Var. Partial Differential Equations, 28, 85-120, 2007 ·Zbl 1132.60004 |
[34] | Lott, J.; Villani, C., Ricci curvature for metric‐measure spaces via optimal transport, Ann. of Math. (2), 169, 903-991, 2009 ·Zbl 1178.53038 |
[35] | Naber, A. |
[36] | Ohta, S.‐I; Sturm, K.‐T., Non‐contraction of heat flow on Minkowski spaces, Arch. Ration. Mech. Anal., 204, 917-944, 2012 ·Zbl 1257.53098 |
[37] | Otto, F.; Villani, C., Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173, 361-400, 2000 ·Zbl 0985.58019 |
[38] | Peletier, M. A.; Savaré, G.; Veneroni, M., Chemical reactions as \(\Gamma \)‐limit of diffusion [revised reprint of mr2679596], SIAM Rev., 54, 327-352, 2012 ·Zbl 1252.35037 |
[39] | Perelman, G., A complete Riemannian manifold of positive Ricci curvature with euclidean volume growth and nonunique asymptotic cone, MSRI Publ. Comparison Geom., 30, 157-163, 1997 ·Zbl 0887.53038 |
[40] | Rossi, R.; Savaré, G., Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2, 395-431, 2003 ·Zbl 1150.46014 |
[41] | Sormani, C.; Wenger, S., The intrinsic flat distance between Riemannian manifolds and other integral current spaces, J. Differential Geom., 87, 117-199, 2011 ·Zbl 1229.53053 |
[42] | Sturm, K.‐T., On the geometry of metric measure spaces. I, Acta Math., 196, 65-131, 2006 ·Zbl 1105.53035 |
[43] | Sturm, K.‐T., On the geometry of metric measure spaces. II, Acta Math., 196, 133-177, 2006 ·Zbl 1106.53032 |
[44] | Sturm, K.‐T. |
[45] | Villani, C., Optimal transport. Old and new, Grundlehren der Mathematischen Wissenschaften 338, 2009, Springer: Berlin ·Zbl 1156.53003 |