Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows.(English)Zbl 1398.53044

Let the metric measure space \((X,d,\mu)\) be separable and the Borel measure \(\mu\) be finite on every bounded set.
The authors define the pmG-convergence for that type of spaces in three different way using, among others, the Gromov reconstruction theorem [M. Gromov, Metric structures for Riemannian and non-Riemannian spaces. Transl. from the French by Sean Michael Bates. With appendices by M. Katz, P. Pansu, and S. Semmes. Edited by J. LaFontaine and P. Pansu. 3rd printing. Basel: Birkhäuser (2007;Zbl 1113.53001)] and a variant ofK.-T. Sturm’s distance [Acta Math. 196, No. 1, 65–131 (2006;Zbl 1105.53035)]). Namely, a sequence of pointed metric measure spaces \((X_n,d_n,\mu_n,\bar{x}_n)\) converges to \((X_{\infty},d_{\infty},\mu_{\infty},\bar{x}_{\infty})\) in pmG-sense if there are a complete separable space \((X,d)\) and isometric embeddings \(\imath_n : X_n \to X\), \(n\in\mathbb{N}\cup\{\infty\}\), such that \[ \int \phi d(\imath_n)_{\sharp}\mu_n \to \int \phi d(\imath)_{\sharp}\mu \] for all continuous, bounded functions \(\phi: X\to \mathbb{R}\) which have bounded support.
Then they prove the following properties of this concept:
1) on doubling spaces pmG-convergence coincides with pmGH-convergence (Propositions 3.30 and 3.33);
2) the curvature condition \(\operatorname{CD}(K,\infty)\) is stable with respect to pmG-convergence (Theorem 4.9);
3) the heat flow, defined as the Wasserstein gradient flow of the relative entropy or as the \(L^2\)-gradient flow of the Cheeger energy, is stable with respect to pmG-convergence (Theorems 5.7 and 6.11).

MSC:

53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
28A33 Spaces of measures, convergence of measures
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
58J35 Heat and other parabolic equation methods for PDEs on manifolds

Cite

References:

[1]Abraham, P. H. R.; Delmas, J. F., A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces, Electron. J. Probab., 18, 1-21, 2013 ·Zbl 1285.60004
[2]Ambrosio, L.; Di Marino, S., Equivalent definitions of BV space and of total variation on metric measure spaces, J. Funct. Anal., 266, 4150-4188, 2014 ·Zbl 1302.26012
[3]Ambrosio, L.; Fusco, N.; Pallara, D., Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, 2000, Clarendon Press: Oxford ·Zbl 0957.49001
[4]Ambrosio, L.; Gigli, N., A user’s guide to optimal transport, Modelling and optimisation of flows on networks. Lecture Notes in Mathematics, 1-155, 2013, Springer: Berlin
[5]Ambrosio, L.; Gigli, N.; Mondino, A.; Rajala, T., Riemannian Ricci curvature lower bounds in metric measure spaces with \(\sigma \)‐finite measure, Trans. Amer. Math. Soc., 367, 4661-4701, 2015 ·Zbl 1317.53060
[6]Ambrosio, L.; Gigli, N.; Savaré, G., Gradient flows in metric spaces and in the space of probability measures, 2nd edn. Lectures in Mathematics, 2008, ETH Zürich: Birkhäuser ·Zbl 1145.35001
[7]Ambrosio, L.; Gigli, N.; Savaré, G., Heat flow and calculus on metric measure spaces with Ricci curvature bounded below—the compact case, Boll. Unione Mat. Ital. (9), 5, 575-629, 2012 ·Zbl 1288.58016
[8]Ambrosio, L.; Gigli, N.; Savaré, G., Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., 1-103, 2013
[9]Ambrosio, L.; Gigli, N.; Savaré, G., Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, Rev. Mat. Iberoamericana, 29, 969-996, 2013 ·Zbl 1287.46027
[10]Ambrosio, L.; Gigli, N.; Savaré, G., Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163, 1405-1490, 2014 ·Zbl 1304.35310
[11]Ambrosio, L.; Gigli, N.; Savaré, G., Bakry-Émery curvature‐dimension condition and Riemannian Ricci curvature bounds, Ann. Probab., 43, 339-404, 2015 ·Zbl 1307.49044
[12]Ambrosio, L.; Savaré, G.; Zambotti, L., Existence and stability for Fokker-Planck equations with log‐concave reference measure, Probab. Theory Related Fields, 145, 517-564, 2009 ·Zbl 1235.60105
[13]Attouch, H., Variational convergence for functions and operators, 1984, Pitman (Advanced Publishing Program): Boston, MA ·Zbl 0561.49012
[14]Bacher, K.; Sturm, K.‐T., Localization and tensorization properties of the curvature‐dimension condition for metric measure spaces, J. Funct. Anal., 259, 28-56, 2010 ·Zbl 1196.53027
[15]Brézis, H., Opérateurs maximaux monotones et semi‐groupes de contractions dans les espaces de Hilbert, North‐Holland Mathematics Studies 5, Notas de Matemática 50, 1973, North‐Holland Publishing: Amsterdam ·Zbl 0252.47055
[16]Burago, D.; Burago, Y.; Ivanov, S., A course in metric geometry, Graduate Studies in Mathematics 33, 2001, American Mathematical Society: Providence, RI ·Zbl 0981.51016
[17]Cheeger, J.; Colding, T., On the structure of spaces with Ricci curvature bounded below I, J. Differential Geom., 45, 406-480, 1997 ·Zbl 0902.53034
[18]Cheeger, J.; Colding, T., On the structure of spaces with Ricci curvature bounded below II, J. Differential Geom., 54, 13-35, 2000 ·Zbl 1027.53042
[19]Cheeger, J.; Colding, T., On the structure of spaces with Ricci curvature bounded below III, J. Differential Geom., 54, 37-74, 2000 ·Zbl 1027.53043
[20]Cheeger, J.; Tian, G., On the cone structure at infinity of Ricci flat manifolds with euclidean volume growth and quadratic curvature decay, Invent. Math., 118, 493-571, 1994 ·Zbl 0814.53034
[21]Colding, T.; Minicozzi, W. P., On uniqueness of tangent cones for einstein manifolds, Invent. Math., 196, 515-588, 2014 ·Zbl 1302.53048
[22]Colding, T.; Naber, A., Sharp holder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications bound and applications, Ann. of Math., 176, 1173-1229, 2012 ·Zbl 1260.53067
[23]Fang, S.; Shao, J.; Sturm, K.‐T., Wasserstein space over the Wiener space, Probab. Theory Related Fields, 146, 535-565, 2010 ·Zbl 1201.37095
[24]Fukaya, K., Collapsing of Riemannian manifolds and eigenvalues of the Laplace operator, Invent. Math., 87, 517-547, 1987 ·Zbl 0589.58034
[25]Gigli, N., On the heat flow on metric measure spaces: existence, uniqueness and stability, Calc. Var. Partial Differential Equations, 39, 101-120, 2010 ·Zbl 1200.35178
[26]Gigli, N.
[27]Gigli, N.; Ledoux, M., From log Sobolev to Talagrand: a quick proof, Discrete Contin. Dyn. Syst., 33, 1927-1935, 2013 ·Zbl 1268.60023
[28]Gigli, N.; Mondino, A.; Rajala, T., Euclidean spaces as weak tangents of infinitesimally Hilbertian metric spaces with Ricci curvature bounded below, J. Reine Angew. Math., 705, 233-244, 2015 ·Zbl 1323.53038
[29]Greven, A.; Pfaffelhuber, P.; Winter, A., Convergence in distribution of random metric measure spaces, Probab. Theory Related Fields, 145, 285-322, 2009 ·Zbl 1215.05161
[30]Gromov, M., Metric structures for Riemannian and non‐Riemannian spaces, Modern Birkhäuser Classics, 2007, Birkhäuser Boston: Boston, MA ·Zbl 1113.53001
[31]Jordan, R.; Kinderlehrer, D.; Otto, F., The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29, 1-17, 1998 ·Zbl 0915.35120
[32]Kuwae, K.; Shioya, T., Convergence of spectral structures: a functional analytic theory and its applications to spectral geometry, Comm. Anal. Geom., 11, 599-673, 2003 ·Zbl 1092.53026
[33]Lisini, S., Characterization of absolutely continuous curves in Wasserstein spaces, Calc. Var. Partial Differential Equations, 28, 85-120, 2007 ·Zbl 1132.60004
[34]Lott, J.; Villani, C., Ricci curvature for metric‐measure spaces via optimal transport, Ann. of Math. (2), 169, 903-991, 2009 ·Zbl 1178.53038
[35]Naber, A.
[36]Ohta, S.‐I; Sturm, K.‐T., Non‐contraction of heat flow on Minkowski spaces, Arch. Ration. Mech. Anal., 204, 917-944, 2012 ·Zbl 1257.53098
[37]Otto, F.; Villani, C., Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173, 361-400, 2000 ·Zbl 0985.58019
[38]Peletier, M. A.; Savaré, G.; Veneroni, M., Chemical reactions as \(\Gamma \)‐limit of diffusion [revised reprint of mr2679596], SIAM Rev., 54, 327-352, 2012 ·Zbl 1252.35037
[39]Perelman, G., A complete Riemannian manifold of positive Ricci curvature with euclidean volume growth and nonunique asymptotic cone, MSRI Publ. Comparison Geom., 30, 157-163, 1997 ·Zbl 0887.53038
[40]Rossi, R.; Savaré, G., Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2, 395-431, 2003 ·Zbl 1150.46014
[41]Sormani, C.; Wenger, S., The intrinsic flat distance between Riemannian manifolds and other integral current spaces, J. Differential Geom., 87, 117-199, 2011 ·Zbl 1229.53053
[42]Sturm, K.‐T., On the geometry of metric measure spaces. I, Acta Math., 196, 65-131, 2006 ·Zbl 1105.53035
[43]Sturm, K.‐T., On the geometry of metric measure spaces. II, Acta Math., 196, 133-177, 2006 ·Zbl 1106.53032
[44]Sturm, K.‐T.
[45]Villani, C., Optimal transport. Old and new, Grundlehren der Mathematischen Wissenschaften 338, 2009, Springer: Berlin ·Zbl 1156.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp