[1] | Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Wasserstein Space of Probability Measures. Birkäuser, Basel (2005) ·Zbl 1090.35002 |
[2] | Ameur, Y., Hedenmalm, H., Makarov, N.: Fluctuations of eigenvalues of random normal matrices. Duke Math. J. 159(1), 31-81 (2011) ·Zbl 1225.15030 |
[3] | Ameur, Yacin, Hedenmalm, Haakan, Makarov, Nikolai: Random normal matrices and Ward identities. Ann. Probab. 43(3), 1157-1201 (2015) ·Zbl 1388.60020 |
[4] | Alastuey, A., Jancovici, B.: On the classical two-dimensional one-component Coulomb plasma. J. Phys. 42(1), 1-12 (1981) |
[5] | Ameur, Y., Ortega-Cerdà, J.: Beurling-Landau densities of weighted Fekete sets and correlation kernel estimates. J. Funct. Anal. 263, 1825-1861 (2012) ·Zbl 1256.31001 |
[6] | Ben Arous, G., Guionnet, A.: Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy. Probab. Theory Relat. Fields 108(4), 517-542 (1997) ·Zbl 0954.60029 |
[7] | Ben Arous, G., Zeitouni, O.: Large deviations from the circular law. ESAIM Probab. Stat. 2, 123-174 (1998) ·Zbl 0916.60022 |
[8] | Barré, J., Bouchet, F., Dauxois, T., Ruffo, S.: Large deviation techniques applied to systems with long-range interactions. J. Stat. Phys. 119(3-4), 677-713 (2005) ·Zbl 1170.82302 |
[9] | Bethuel, F., Brezis, H., Hélein, F., Vortices, G.-L.: Progress in Nonlinear Differential Equations and their Applications, vol. 13. Birkhäuser Boston Inc., Boston (1994) ·Zbl 0802.35142 |
[10] | Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.-T.: Local density for two-dimensional one-component plasma (2015). arxiv:1510.02074 ·Zbl 1383.82056 |
[11] | Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.-T.: The two-dimensional coulomb plasma: quasi-free approximation and central limit theorem (2016). arXiv:1609.08582 ·Zbl 1486.82042 |
[12] | Bourgade, P., Erdös, L., Yau, H.T.: Bulk universality of general \[\beta\] β-ensembles with non-convex potential. J. Math. Phys. 53(9), 095221 (2012) ·Zbl 1278.82032 |
[13] | Bourgade, P., Erdös, L., Yau, H.-T.: Universality of general \[\beta\] β-ensembles. Duke Math. J. 163(6), 1127-1190 (2014) ·Zbl 1298.15040 |
[14] | Bekerman, F., Figalli, A., Guionnet, A.: Transport maps for Beta-matrix models and universality. arXiv preprint (2013). arXiv:1311.2315 ·Zbl 1330.49046 |
[15] | Bodineau, T., Guionnet, A.: About the stationary states of vortex systems. Ann. Inst. H. Poincaré Probab. Stat. 35(2), 205-237 (1999) ·Zbl 0920.60095 |
[16] | Borot, G., Guionnet, A.: All-order asymptotic expansion of beta matrix models in the multi-cut regime (2013). arXiv preprint arXiv:1303.1045 ·Zbl 1344.60012 |
[17] | Borot, G., Guionnet, A.: Asymptotic expansion of \[\beta\] β matrix models in the one-cut regime. Commun. Math. Phys 317(2), 447-483 (2013) ·Zbl 1344.60012 |
[18] | Borodachev, S., Hardin, D.H., Saff, E.B.: Minimal discrete energy on the sphere and other manifolds (2017) (in preparation) |
[19] | Brauchart, J.S., Hardin, D.P., Saff, E.B.: The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere. In: Arvesú, J., López Lagomasino, G. (eds.) Recent Advances in Orthogonal Polynomials, Special Functions, and Their Applications, vol. 578 of Contemporary Mathematics, pp. 31-61. American Mathematical Society, Providence (2012) ·Zbl 1318.31011 |
[20] | Blanc, X., Lewin, M.: The crystallization conjecture: a review (2015). arXiv preprint arXiv:1504.01153 ·Zbl 1341.82010 |
[21] | Bekerman, F., Leblé, T., Serfaty, S.: CLT for fluctuations of \[\beta\] β-ensembles with general potential (2017) (in preparation) ·Zbl 1406.60036 |
[22] | Borodin, A., Sinclair, C.D.: The Ginibre ensemble of real random matrices and its scaling limits. Commun. Math. Phys 291(1), 177-224 (2009) ·Zbl 1184.82004 |
[23] | Brush, S.G., Sahlin, H.L., Teller, E.: Monte-Carlo study of a one-component plasma. J. Chem. Phys 45, 2102-2118 (1966) |
[24] | Caffarelli, L.A.: The obstacle problem revisited. J. Fourier Anal. Appl. 4(4-5), 383-402 (1998) ·Zbl 0928.49030 |
[25] | Choquard, P., Clerouin, J.: Cooperative phenomena below melting of the one-component two-dimensional plasma. Phys. Rev. Lett. 50(26), 2086 (1983) |
[26] | Campa, A., Dauxois, T., Ruffo, S.: Statistical mechanics and dynamics of solvable models with long-range interactions. Phys. Rep. 480(3), 57-159 (2009) |
[27] | Chafaï, D., Gozlan, N., Zitt, P.-A.: First-order global asymptotics for confined particles with singular pair repulsion. Ann. Appl. Probab. 24(6), 2371-2413 (2014) ·Zbl 1304.82050 |
[28] | Choquet, G.: Diamètre transfini et comparaison de diverses capacités. Technical report, Faculté des Sciences de Paris (1958) |
[29] | Caillol, J.-M., Levesque, D., Weis, J.-J., Hansen, J.-P.: A monte carlo study of the classical two-dimensional one-component plasma. J. Stat.Phys. 28(2), 325-349 (1982) |
[30] | Caffarelli, L.A., Riviere, N.M.: Smoothness and analyticity of free boundaries in variational inequalities. Ann. Sc. Norm. Super. Pisa Cl. Sci. 3(2), 289-310 (1976) ·Zbl 0363.35009 |
[31] | Caffarelli, L.A., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. PDE 32(7-9), 1245-1260 (2007) ·Zbl 1143.26002 |
[32] | Caffarelli, L., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional laplacian. Invent. Math. 171(2), 425-461 (2008) ·Zbl 1148.35097 |
[33] | Daley, D.J., Verey-Jones, D.: An Introduction to the Theory of Point Processes. Springer, New York (1988) ·Zbl 0657.60069 |
[34] | Daley, D.J., Verey-Jones, D.: An Introduction to the Theory of Point Processes, vol. II. Springer, Berlin (2008) ·Zbl 1159.60003 |
[35] | Dyson, F.: Statistical theory of the energy levels of a complex system, part i. J. Math. Phys. 3, 140-156 (1962) ·Zbl 0105.41604 |
[36] | Dyson, F.: Statistical theory of the energy levels of a complex system, part ii. J. Math. Phys. 3, 157-185 (1962) ·Zbl 0105.41604 |
[37] | Dyson, F.: Statistical theory of the energy levels of a complex system, part iii. J. Math. Phys. 3, 166-175 (1962) ·Zbl 0105.41604 |
[38] | Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, vol. 38 of Stochastic Modelling and Applied Probability. Springer, Berlin, 2010. Corrected reprint of the second edition (1998) ·Zbl 0896.60013 |
[39] | Fabes, E.B., Kenig, C.E., Serapioni, R.P.: The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equ. 7(1), 77-116 (1982) ·Zbl 0498.35042 |
[40] | Föllmer, H., Orey, S.: Large deviations for the empirical field of a Gibbs measure. Ann. Probab. 16(3), 961-977 (1988) ·Zbl 0648.60028 |
[41] | Föllmer, H.: Random fields and diffusion processes. In: École d’Été de Probabilités de Saint-Flour XV-XVII, 1985-87, vol. 1362 of Lecture Notes in Mathematics, pp. 101-203. Springer, Berlin (1988) ·Zbl 0661.60063 |
[42] | Forrester, P.J.: Exact integral formulas and asymptotics for the correlations in the \[1/r^21\]/r2 quantum many-body system. Phys. Lett. A 179(2), 127-130 (1993) |
[43] | Forrester, P.J.: Log-Gases and Random Matrices, London Mathematical Society Monographs Series, vol. 34. Princeton University Press, Princeton (2010) ·Zbl 1217.82003 |
[44] | Frostman, O.: Potentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions. Meddelanden Mat. Sem. Univ. Lund 3, 115 s, (1935) ·JFM 61.1262.02 |
[45] | Georgii, H.-O.: Large deviations and maximum entropy principle for interacting random fields on. Ann. Probab. 21(4), 1845-1875 (1993) ·Zbl 0790.60031 |
[46] | Ginibre, J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440-449 (1965) ·Zbl 0127.39304 |
[47] | Girvin, S.: Introduction to the fractional quantum Hall effect. In: Douçot, B., Pasquier, V., Duplantier, B., Rivasseau, V. (eds.) The Quantum Hall Effect, pp. 133-162. Springer, Berlin (2005) ·Zbl 1148.35097 |
[48] | Georgii, H.-O., Zessin, H.: Large deviations and the maximum entropy principle for marked point random fields. Probab. Theory Relat. Fields 96(2), 177-204 (1993) ·Zbl 0792.60024 |
[49] | Hardin, D.P., Leblé, T., Saff, E.B., Serfaty, S.: Large deviation principles for hypersingular Riesz gases (2017). arXiv:1702.02894 ·Zbl 1398.82044 |
[50] | Hiai, F., Petz, D.: The Semicircle Law, Free Random Variables and Entropy, Mathematical Surveys and Monographs, vol. 77. American Mathematical Society, Providence (2000) ·Zbl 0955.46037 |
[51] | Jancovici, B., Lebowitz, J., Manificat, G.: Large charge fluctuations in classical Coulomb systems. J. Stat. Phys 72(3-4), 773-777 (1993) ·Zbl 1101.82307 |
[52] | Kinderlehrer, D.: Variational inequalities and free boundary problems. Bull. Am. Math. Soc. 84(1), 7-26 (1978) ·Zbl 0382.35004 |
[53] | Kapfer, S., Krauth, W.: Two-dimensional melting: from liquid-hexatic coexistence to continuous transitions. Phys. Rev. Lett. 114(3), 035702 (2015) |
[54] | Killip, R., Stoiciu, M.: Eigenvalue statistics for CMV matrices: from Poisson to clock via random matrix ensembles. Duke Math. J. 146(3), 361-399 (2009) ·Zbl 1155.81020 |
[55] | Leblé, T.: Local microscopic behavior for 2D Coulomb gases. Probab. Theor. Relat. Fields (2016). doi:10.1007/s00440-016-0744-y ·Zbl 1379.82004 |
[56] | Leblé, T.: Logarithmic, Coulomb and Riesz energy of point processes. J. Stat. Phys. 162(4), 887-923 (2016) ·Zbl 1341.82021 |
[57] | Li, Y.: Rigidity of eigenvalues for beta-ensemble in multi-cut regime (2016). arXiv preprint arXiv:1611.06603 |
[58] | Lieb, E.H., Lebowitz, J.L.: Existence of thermodynamics for real matter with Coulomb forces. Phys. Rev. Lett. 22, 631-634 (1969) |
[59] | Lieb, E.H., Narnhofer, H.: The thermodynamic limit for jellium. J. Stat. Phys. 12, 291-310 (1975) ·Zbl 0973.82500 |
[60] | Lieb, E., Rougerie, N., Yngvason, J.: Local incompressibility estimates for the Laughlin phase (2017). arXiv preprint arXiv:1701.09064 ·Zbl 1410.82009 |
[61] | Leblé, T., Serfaty, S.: Fluctuations of two-dimensional Coulomb gases (2016). arXiv preprint arXiv:1609.08088 ·Zbl 1423.60045 |
[62] | Leblé, T., Serfaty, S., Zeitouni, O.: Large deviations for the two-dimensional two-component plasma. Commun. Math. Phys. 350(1), 301-360 (2017) ·Zbl 1371.82109 |
[63] | Mazars, M.: Long ranged interactions in computer simulations and for quasi-2d systems. Phys. Rep. 500, 43-116 (2011) |
[64] | Nakano, F.: Level statistics for one-dimensional Schrödinger operators and Gaussian beta ensemble. J. Stat. Phys. 156(1), 66-93 (2014) ·Zbl 1303.82019 |
[65] | Petrache, M., Rota-Nodari, S.: Equidistribution of jellium energy for Coulomb and Riesz interactions (2016). arXiv preprint arXiv:1609.03849 ·Zbl 1391.82003 |
[66] | Penrose, O., Smith, E.R.: Thermodynamic limit for classical systems with Coulomb interactions in a constant external field. Commun. Math. Phys 26, 53-77 (1972) |
[67] | Petrache, M., Serfaty, S.: Next order asymptotics and renormalized energy for Riesz interactions. J. Inst. Math. Jussieu. 16(3), 501-569 (2017) ·Zbl 1373.82013 |
[68] | Rota Nodari, S., Serfaty, S.: Renormalized energy equidistribution and local charge balance in 2D Coulomb systems. Int. Math. Res. Not. 2015(11), 3035-3093 (2015) ·Zbl 1321.82029 |
[69] | Rassoul-Agha, F., Seppäläinen, T., A course on Large Deviation Theory with an Introduction to Gibbs Measures, volume 162 of Graduate Studies in Mathematics, 2015 edn. American Mathematical Society (2009) ·Zbl 1330.60001 |
[70] | Rougerie, N., Serfaty, S.: Higher-dimensional Coulomb gases and renormalized energy functionals. Commun. Pure Appl. Math. 69(3), 519-605 (2016) ·Zbl 1338.82043 |
[71] | Rider, B., Virág, B.: The noise in the circular law and the Gaussian free field. Int. Math. Res. Not. 2007 (2007). doi:10.1093/imrn/rnm006 ·Zbl 1130.60030 |
[72] | Serfaty, S.: Coulomb gases and Ginzburg-Landau vortices. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2015) ·Zbl 1335.82002 |
[73] | Shcherbina, M.: Fluctuations of linear eigenvalue statistics of \[\beta\] β matrix models in the multi-cut regime. J. Stat. Phys 151(6), 1004-1034 (2013) ·Zbl 1273.15042 |
[74] | Saff, E., Kuijlaars, A.: Distributing many points on a sphere. Math. Intell. 19(1), 5-11 (1997) ·Zbl 0901.11028 |
[75] | Sari, R., Merlini, D.: On the \[\nu\] ν-dimensional one-component classical plasma: the thermodynamic limit problem revisited. J. Stat. Phys. 14(2), 91-100 (1976) |
[76] | Sandier, E., Serfaty, S.: Vortices in the Magnetic Ginzburg-Landau Model. In: Progress in Nonlinear Differential Equations and their Applications, vol. 70, Birkhäuser, Boston (2007) ·Zbl 1112.35002 |
[77] | Sandier, E., Serfaty, S.: From the Ginzburg-Landau model to vortex lattice problems. Commun. Math. Phys. 313, 635-743 (2012) ·Zbl 1252.35034 |
[78] | Sandier, E., Serfaty, S.: 1d log gases and the renormalized energy: crystallization at vanishing temperature. Probab. Theory Relat. Fields 162(3-4), 795-846 (2015) ·Zbl 1327.82005 |
[79] | Sandier, E., Serfaty, S.: 2d Coulomb gases and the renormalized energy. Ann. Probab. 43(4), 2026-2083 (2015) ·Zbl 1328.82006 |
[80] | Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields. Grundlehren der mathematischen Wissenchaften vol. 316, Springer, Berlin (1997) ·Zbl 0881.31001 |
[81] | Stormer, H., Tsui, D., Gossard, A.: The fractional quantum Hall effect. Rev. Mod. Phys. 71(2), S298 (1999) |
[82] | Stishov, S.M.: Does the phase transition exist in the one-component plasma model? J. Exp. Theor. Phys. Lett. 67(1), 90-94 (1998) |
[83] | Torquato, S.: Hyperuniformity and its generalizations. Phys. Rev. E 94(2), 022122 (2016) |
[84] | Varadhan, S.R.S.: Large deviations and applications. In: École d’Été de Probabilités de Saint-Flour XV-XVII, 1985-87, vol. 1362 of Lecture Notes in Mathematics, pp. 1-49. Springer, Berlin (1988) ·Zbl 0661.60040 |
[85] | Valkó, B., Virág, B.: Continuum limits of random matrices and the brownian carousel. Invent. Math. 177(3), 463-508 (2009) ·Zbl 1204.60012 |
[86] | Wigner, E.: Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62, 548-564 (1955) ·Zbl 0067.08403 |
[87] | Zabrodin, A., Wiegmann, P.: Large-\[NN\] expansion for the 2D Dyson gas. J. Phys. A 39(28), 8933-8963 (2006) ·Zbl 1098.82011 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.