[1] | Aoki, N. and Hiraide, K.. Topological theory of dynamical systems. Recent Advances. North-Holland Publishing, Amsterdam, 1994. ·Zbl 0798.54047 |
[2] | Bowen, R., Periodic points and measures for Axiom A diffeomorphisms, Trans. Amer. Math. Soc., 154, 377-397, (1971) ·Zbl 0212.29103 |
[3] | Bowen, R., Entropy-expansive maps, Trans. Amer. Math. Soc., 164, 323-331, (1972) ·Zbl 0229.28011 ·doi:10.1090/S0002-9947-1972-0285689-X |
[4] | Bowen, R., 𝜔-limit sets for Axiom A diffeomorphisms, J. Differential Equations, 18, 333-339, (1975) ·Zbl 0315.58019 ·doi:10.1016/0022-0396(75)90065-0 |
[5] | Brucks, K. M. and Bruin, H.. Topics from One-dimensional Dynamics. Cambridge University Press, Cambridge, 2004. doi:10.1017/CBO9780511617171 ·Zbl 1074.37022 |
[6] | Comman, H.. Criteria for the density of the graph of the entropy map restricted to ergodic states. Ergod. Th. & Dynam. Sys. published online, doi:10.107/etds/2015.72. ·Zbl 1375.37018 |
[7] | Delahaye, J.-P., Fonctions admettant des cycles d’ordre n’importe quelle puissance de 2 et aucun autre cycle. (French) [Functions admitting cycles of any power of 2 and no other cycle], C. R. Acad. Sci. Paris Sér. A-B, 291, 4, A323-A325, (1980) ·Zbl 0455.65084 |
[8] | Denker, M., Grillenberger, C. and Sigmund, K.. Ergodic Theory on Compact Spaces. Springer, Berlin, 1976. doi:10.1007/BFb0082364 ·Zbl 0328.28008 |
[9] | Downarowicz, T.. Survey of odometers and Toeplitz flows. Algebraic and Topological Dynamics. American Mathematics Society, Providence, RI, 2005, p. 737. ·Zbl 1096.37002 |
[10] | Dudley, R., Real Analysis and Probability, (2002), Cambridge University Press: Cambridge University Press, Cambridge ·Zbl 1023.60001 ·doi:10.1017/CBO9780511755347 |
[11] | Dong, Y., Oprocha, P. and Tian, X.. On the irregular points for systems with the shadowing property.Ergod. Th. & Dynam. Sys., to appear. ·Zbl 1397.37009 |
[12] | Eizenberg, A., Kifer, Y. and Weiss, B.. Large deviations for ℤd-actions. Commun. Math. Phys.164 (1994), 433-454. doi:10.1007/BF02101485 ·Zbl 0841.60086 |
[13] | Gurevič, B. M.. Topological entropy of a countable Markov chain. Dokl. Akad. Nauk SSSR187 (1969), 715-718 (Russian); English trans.Soviet Math. Dokl.10 (1969), 911-915. ·Zbl 0194.49602 |
[14] | Haraczyk, G., Kwietniak, D. and Oprocha, P.. Topological structure and entropy of mixing graph maps. Ergod. Th. & Dynam. Sys.34 (2014), 1587-1614. doi:10.1017/etds.2013.6 ·Zbl 1351.37174 |
[15] | Israel, R. B. and Phelps, R. R.. Some convexity questions arising in statistical mechanics. Math. Scand.54 (1984), 133-156. doi:10.7146/math.scand.a-12048 ·Zbl 0605.46013 |
[16] | Kitchens, B. P., Symbolic dynamics, One-sided, Two-sided and Countable State Markov Shifts, (1998), Springer: Springer, Berlin ·Zbl 0892.58020 |
[17] | Kuchta, M., Shadowing property of continuous maps with zero topological entropy, Proc. Amer. Math. Soc., 119, 641-648, (1993) ·Zbl 0827.54025 ·doi:10.1090/S0002-9939-1993-1165058-X |
[18] | Kurka, P., Topological and symbolic dynamics, Cours Spécialisés [Specialized Courses], 11, (2003), Société Mathématique de France: Société Mathématique de France, Paris ·Zbl 1038.37011 |
[19] | Kwietniak, D., Łacka, M. and Oprocha, P.. A panorama of specification-like properties and their consequences. Dynamics and Numbers. American Mathematical Society, Providence, RI, 2016, pp. 155-186. doi:10.1090/conm/669/13428 ·Zbl 1376.37024 |
[20] | Li, J. and Oprocha, P.. Shadowing property, weak mixing and regular recurrence. J. Dynam. Differential Equations25 (2013), 1233-1249. doi:10.1007/s10884-013-9338-x ·Zbl 1294.37006 |
[21] | Lind, D. and Marcus, B.. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995. doi:10.1017/CBO9780511626302 ·Zbl 1106.37301 |
[22] | Misiurewicz, M., Diffeomorphism without any measure with maximal entropy, Bull. Acad. Pol. Sci., 21, 903-910, (1973) ·Zbl 0272.28013 |
[23] | Moothathu, T. K. S., Implications of pseudo-orbit tracing property for continuous maps on compacta, Topol. Appl., 158, 2232-2239, (2011) ·Zbl 1235.54018 ·doi:10.1016/j.topol.2011.07.016 |
[24] | Moothathu, T. K. S. and Oprocha, P.. Shadowing, entropy and minimal subsystems. Monatsh. Math.172 (2013), 357-378. doi:10.1007/s00605-013-0504-3 ·Zbl 1285.37002 |
[25] | Paul, M. E., Construction of almost automorphic symbolic minimal flows, Gen. Topol. Appl., 6, 45-56, (1976) ·Zbl 0341.54054 ·doi:10.1016/0016-660X(76)90007-6 |
[26] | Pfister, C.-E. and Sullivan, W. G.. Large deviations estimates for dynamical systems without the specification property. Applications to the 𝛽-shifts. Nonlinearity18 (2005), 237-261. doi:10.1088/0951-7715/18/1/013 ·Zbl 1069.60029 |
[27] | Richeson, D. and Wiseman, J.. Chain recurrence rates and topological entropy. Topol. Appl.156(2) (2008), 251-261. doi:10.1016/j.topol.2008.07.005 ·Zbl 1151.37304 |
[28] | Ruelle, D., Statistical mechanics on a compact set with ℤ action satisfying expansiveness and specification, Trans. Amer. Math. Soc., 185, 237-251, (1973) ·Zbl 0278.28012 ·doi:10.2307/1996437 |
[29] | Ruette, S., On the Vere-Jones classification and existence of maximal measures for countable topological Markov chains, Pacific J. Math., 209, 366-380, (2003) ·Zbl 1055.37020 ·doi:10.2140/pjm.2003.209.365 |
[30] | Ruette, S.. Chaos on the interval — a survey of relationship between the various kinds of chaos for continuous interval maps. University Lecture Series, American Mathematical Society, to appear. ·Zbl 1417.37029 |
[31] | Salama, I. A.. On the recurrence of countable topological Markov chains. Symbolic Dynamics and Its Applications (New Haven, CT, 1991). American Mathematical Society, Providence, RI, 1992, pp. 349-360. doi:10.1090/conm/135/1185102 ·Zbl 0801.54032 |
[32] | Sigmund, K., Generic properties of invariant measures for Axiom A diffeomorphisms, Invent. Math., 11, 99-109, (1970) ·Zbl 0193.35502 ·doi:10.1007/BF01404606 |
[33] | Sigmund, K., On dynamical systems with the specification property, Trans. Amer. Math. Soc., 190, 285-299, (1974) ·Zbl 0286.28010 ·doi:10.1090/S0002-9947-1974-0352411-X |
[34] | Vere-Jones, D., Geometric ergodicity in denumerable Markov chains, Quart. J. Math. Oxford Ser., 13, 7-28, (1962) ·Zbl 0104.11805 ·doi:10.1093/qmath/13.1.7 |
[35] | Walters, P.. On the pseudo-orbit tracing property and its relationship to stability. The Structure of Attractors in Dynamical Systems (Proc. Conf., North Dakota State University, Fargo, ND, 1977). Springer, Berlin, 1978, pp. 231-244. doi:10.1007/BFb0101795 ·Zbl 0403.58019 |
[36] | Walters, P., An Introduction to Ergodic Theory, (2001), Springer: Springer, Berlin |
[37] | Williams, S., Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete, 67, 95-107, (1984) ·Zbl 0584.28007 ·doi:10.1007/BF00534085 |
[38] | Coven, E. M., Kan, I. and Yorke, J. A.. Pseudo-orbit shadowing in the family of tent maps. Trans. Amer. Math. Soc.308 (1988), 227-241. doi:10.1090/S0002-9947-1988-0946440-2 ·Zbl 0651.58032 |