Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Trihyperkähler reduction and instanton bundles on \(\mathbb{CP}^{3}\).(English)Zbl 1396.14012

Summary: A trisymplectic structure on a complex \(2n\)-manifold is a three-dimensional space \(\Omega\) of closed holomorphic forms such that any element of \(\Omega\) has constant rank \(2n\), \(n\) or zero, and degenerate forms in \(\Omega\) belong to a non-degenerate quadric hypersurface. We show that a trisymplectic manifold is equipped with a holomorphic 3-web and the Chern connection of this 3-web is holomorphic, torsion-free, and preserves the three symplectic forms. We construct a trisymplectic structure on the moduli of regular rational curves in the twistor space of a hyper-Kähler manifold, and define a trisymplectic reduction of a trisymplectic manifold, which is a complexified form of a hyper-Kähler reduction. We prove that the trisymplectic reduction in the space of regular rational curves on the twistor space of a hyper-Kähler manifold \(M\) is compatible with the hyper-Kähler reduction on \(M\). As an application of these geometric ideas, we consider the ADHM construction of instantons and show that the moduli space of rank \(r\), charge \(c\) framed instanton bundles on \(\mathbb{CP}^3\) is a smooth trisymplectic manifold of complex dimension \(4rc\). In particular, it follows that the moduli space of rank two, charge \(c\) instanton bundles on \(\mathbb{C}\mathbb{P}^{3}\) is a smooth complex manifold dimension \(8c-3\), thus settling part of a 30-year-old conjecture.

MSC:

14C21 Pencils, nets, webs in algebraic geometry
14D20 Algebraic moduli problems, moduli of vector bundles
53A60 Differential geometry of webs
53C26 Hyper-Kähler and quaternionic Kähler geometry, “special” geometry
53C28 Twistor methods in differential geometry

Cite

References:

[1]doi:10.1007/s00220-005-1472-9 ·Zbl 1105.53037 ·doi:10.1007/s00220-005-1472-9
[2]doi:10.1016/0375-9601(78)90141-X ·Zbl 0424.14004 ·doi:10.1016/0375-9601(78)90141-X
[3]doi:10.1007/BF01450706 ·Zbl 0438.14015 ·doi:10.1007/BF01450706
[4]doi:10.1007/BF02104116 ·Zbl 0734.53025 ·doi:10.1007/BF02104116
[5]doi:10.1007/s000290050033 ·Zbl 0917.53006 ·doi:10.1007/s000290050033
[7]doi:10.1016/j.aim.2011.03.012 ·Zbl 1260.14016 ·doi:10.1016/j.aim.2011.03.012
[8]doi:10.1016/j.crma.2008.02.014 ·Zbl 1143.14036 ·doi:10.1016/j.crma.2008.02.014
[12]doi:10.1070/IM2012v076n05ABEH002613 ·Zbl 1262.14053 ·doi:10.1070/IM2012v076n05ABEH002613
[13]doi:10.1007/BF01393378 ·Zbl 0486.53048 ·doi:10.1007/BF01393378
[16]doi:10.1007/BF01214418 ·Zbl 0612.53043 ·doi:10.1007/BF01214418
[18]doi:10.1017/S0017089510000558 ·Zbl 1238.14010 ·doi:10.1017/S0017089510000558
[19]doi:10.1142/S0129167X03001624 ·Zbl 1059.14018 ·doi:10.1142/S0129167X03001624
[20]doi:10.1007/BF01420250 ·Zbl 0411.14002 ·doi:10.1007/BF01420250
[21]doi:10.1007/978-3-540-74311-8 ·doi:10.1007/978-3-540-74311-8
[22]doi:10.2307/1970257 ·Zbl 0108.07804 ·doi:10.2307/1970257
[24]doi:10.1016/j.jalgebra.2008.01.016 ·Zbl 1145.14017 ·doi:10.1016/j.jalgebra.2008.01.016
[25]doi:10.1007/BF01450348 ·Zbl 0477.14014 ·doi:10.1007/BF01450348
[27]doi:10.1007/BF01450561 ·Zbl 0438.14009 ·doi:10.1007/BF01450561
[28]doi:10.1007/BF01360864 ·Zbl 0332.32021 ·doi:10.1007/BF01360864
[29]doi:10.1007/BF01212289 ·Zbl 0581.14008 ·doi:10.1007/BF01212289
[30]doi:10.1090/S0002-9947-1957-0086359-5 ·doi:10.1090/S0002-9947-1957-0086359-5
[31]doi:10.4171/051-1/3 ·doi:10.4171/051-1/3
[32]doi:10.1023/A:1004176617816 ·Zbl 1034.53081 ·doi:10.1023/A:1004176617816
[33]doi:10.1007/978-3-642-57916-5 ·Zbl 0797.14004 ·doi:10.1007/978-3-642-57916-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp