Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On the rank of universal quadratic forms over real quadratic fields.(English)Zbl 1396.11061

Consider a real quadratic field \(\mathbb{Q}(\sqrt{D})\) with discriminant \(\Delta\) and let \(m(D)\) be the minimal number of variables required by a totally positive definite diagonal universal quadratic form. Let \(\omega_D= \sqrt{D}\) resp. \({1+\sqrt{D}\over 2}\) (for \(D\equiv 2,3\mod 4\), resp. \(D\equiv 1\mod 4\)) and \(\omega_D= [u_0,\overline{u_1,u_2,\dots, u_s}]\) the periodic continued fraction expression with \(s\) minimal. If \(s\) is odd, let \(M_D= u_1+\dots +u_s\).
The authors obtain lower and upper bounds for \(\omega(D)\), e.g., \(\omega(D)\leq 8M_D\) if \(s\) is odd and \(M_D\leq c\sqrt{\Delta}(\log\Delta)^2\) for an absolute constant \(c>0\).
Furthermore, they establish a link between \(M_D\) and special values of \(L\)-functions in the spirit of Kronecker’s limit formula: \[M_D\sim {\sqrt{\Delta}\over \zeta^{(\Delta)}(2)} \Biggl(L(D)+{1\over h} L(1,\chi_\Delta)\log\sqrt{D}\Biggr).\]

MSC:

11E12 Quadratic forms over global rings and fields
11R11 Quadratic extensions
11A55 Continued fractions

Cite

References:

[1]M. Bhargava,On the Conway-Schneeberger Fifteen Theorem, Contemp. Math.272 (1999), 27-37. zbl 0987.11027; MR 1803359 ·Zbl 0987.11027
[2]M. Bhargava, J. Hanke,Universal quadratic forms and the 290-theorem, preprint
[3]A. Bir\'o, A. Granville,Zeta functions for ideal classes in real quadratic fields, at \(s=0\), J. Number Theory132 (2012), 1807-1829. DOI 10.1016/j.jnt.2012.02.003; zbl 1276.11180; MR 2922348 ·Zbl 1276.11180 ·doi:10.1016/j.jnt.2012.02.003
[4]V. Blomer, G. Harcos, P. Michel,Bounds for modular \(L\)-functions in the level aspect, Ann. Sci. Ecole Norm. Sup.40 (2007), 697-740. DOI 10.1016/j.ansens.2007.05.003; zbl 1185.11034; MR 2382859 ·Zbl 1185.11034 ·doi:10.1016/j.ansens.2007.05.003
[5]V. Blomer, V. Kala,Number fields without universal \(n\)-ary quadratic forms, Math. Proc. Cambridge Philos. Soc.159 (2015), 239-252. DOI 10.1017/S030500411500033X; zbl 1371.11084; MR 3395370; arxiv 1503.05736 ·Zbl 1371.11084 ·doi:10.1017/S030500411500033X
[6]W. K. Chan, M.-H. Kim, S. Raghavan,Ternary universal integral quadratic forms, Japan. J. Math.22 (1996), 263-273. MR 1432376 ·Zbl 0868.11020
[7]A. Dress, R. Scharlau,Indecomposable totally positive numbers in real quadratic orders, J. Number Theory14 (1982), 292-306. DOI 10.1016/0022-314X(82)90064-6; zbl 0507.12002; MR 0660374 ·Zbl 0507.12002 ·doi:10.1016/0022-314X(82)90064-6
[8]W. Duke, J. Friedlander, H. Iwaniec,The subconvexity problem for Artin \(L\)-functions, Invent. Math.149 (2002), 489-577. DOI 10.1007/s002220200223; zbl 1056.11072; MR 1923476 ·Zbl 1056.11072 ·doi:10.1007/s002220200223
[9]C. Friesen,On continued fractions of given period, Proc. Amer. Math. Soc.103 (1988), 8-14. DOI 10.1090/S0002-9939-1988-0938635-4; zbl 0652.10006; MR 0938635 ·Zbl 0652.10006 ·doi:10.1090/S0002-9939-1988-0938635-4
[10]E. Fogels,On the zeros of Hecke’s L-functions I, Acta Arith.7 (1962), 87-106. zbl 0100.03801; MR 0136585 ·Zbl 0100.03801
[11]G. H. Hardy, E. M. Wright,An introduction to the theory of numbers, 5th edition. The Clarendon Press, Oxford University Press, New York, 1979 ·Zbl 0423.10001
[12]Heath-Brown,Hybrid bounds for Dirichlet \(L\)-functions. II, Quart. J. Math. Oxford31 (1980), 157-167. zbl 0396.10030; MR 0576334 ·Zbl 0396.10030
[13]E. Hecke, \`“Uber die Kroneckersche Grenzformel f\"ur reelle quadratische K\"orper und die Klassenzahl relativ-abelscher K\'”orper, Verhandl. d. Naturforschenden Gesell. Basel28, 363-372 (1917). (Mathematische Werke pp.198-207). zbl 47.0144.01 ·JFM 47.0144.01
[14]G. Herglotz,\`“Uber die Kroneckersche Grenzformel f\"ur reelle, quadratische K\"orper I, II, Berichte Verhandl. S\'”achs. Akad. Wiss. Leipzig75 (1923), 3-14, 31-37. zbl 49.0125.03 ·JFM 49.0125.03
[15]S. W. Jang, B. M. Kim,A refinement of the Dress-Scharlau theorem, J. Number Theory158 (2016), 234-243. DOI 10.1016/j.jnt.2015.06.003; zbl 1331.11092; MR 3393549 ·Zbl 1331.11092 ·doi:10.1016/j.jnt.2015.06.003
[16]M. Jacobson, H. Williams,Solving the Pell equation, CMS books in mathematics, Springer-Verlag 2009. ISBN 978-0-387-84922-5. MR 2466979 ·Zbl 1177.11027
[17]V. Kala,Universal quadratic forms and elements of small norm in real quadratic fields, Bull. Aust. Math. Soc.94 (2016), 7-14. DOI 10.1017/S0004972715001495; zbl 1345.11025; MR 3539315 ·Zbl 1345.11025 ·doi:10.1017/S0004972715001495
[18]V. Kala,Norms of indecomposable integers in real quadratic fields, J. Number Theory166 (2016), 193-207. DOI 10.1016/j.jnt.2016.02.022; zbl 06572137; MR 3486273; arxiv 1512.04691 ·Zbl 1414.11131 ·doi:10.1016/j.jnt.2016.02.022
[19]B. M. Kim,Finiteness of real quadratic fields which admit positive integral diagonal septenary universal forms, Manuscr. Math.99 (1999), 181-184. DOI 10.1007/s002290050168; zbl 0961.11016; MR 1697212 ·Zbl 0961.11016 ·doi:10.1007/s002290050168
[20]B. M. Kim,Universal octonary diagonal forms over some real quadratic fields, Commentarii Math. Helv.75 (2000), 410-414. DOI 10.1007/s000140050133; zbl 1120.11301; MR 1793795 ·Zbl 1120.11301 ·doi:10.1007/s000140050133
[21]X. Li,Upper bounds on \(L\)-functions at the edge of the critical strip, IMRN2010, 727-755. zbl 1219.11136; MR 2595006 ·Zbl 1219.11136
[22]J. E. Littlewood,On the class-number of the corpus \(P(\sqrt{-k})\), Proc. Lond. Math. Soc27 (1928), 358-372. DOI 10.1112/plms/s2-27.1.358; zbl 54.0206.02; MR 1575396 ·JFM 54.0206.02 ·doi:10.1112/plms/s2-27.1.358
[23]H. Maa{\ss},\`“ Uber die Darstellung total positiver Zahlen des K\'” orpers \(R(\sqrt 5)\) als Summe von drei Quadraten, Abh. Math. Sem. Univ. Hamburg14 (1942), 185-191. DOI 10.1007/BF02940744; zbl 67.0103.02; MR 3069720 ·JFM 67.0103.02 ·doi:10.1007/BF02940744
[24]O. Perron,Die Lehre von den Kettenbr\" uchen, Chelsea, New York, 1958
[25]H. Sasaki,Quaternary universal forms over \(\mathbb Q[\sqrt{13}]\), Ramanujan J.18 (2009), 73-80. DOI 10.1007/s11139-007-9056-2; zbl 1193.11033; MR 2471617 ·Zbl 1193.11033 ·doi:10.1007/s11139-007-9056-2
[26]C. L. Siegel,Sums of \(m\)-th powers of algebraic integers, Ann. Math.46 (1945), 313-339. zbl 0063.07010; MR 0012630 ·Zbl 0063.07010
[27]P. Yatsyna,A lower bound for the rank of a universal quadratic form with integer coefficients in a totally real field, preprint ·Zbl 1471.11128
[28]D. Zagier,A Kronecker limit formula for real quadratic fields, Math. Ann.213 (1975), 153-184. DOI 10.1007/BF01343950; zbl 0283.12004; MR 0366877 ·Zbl 0283.12004 ·doi:10.1007/BF01343950
[29]D. Zagier,Zetafunktionen und quadratische K\"orper, Springer-Verlag 1981, ISBN 3-540-10603-0 MR 0631688
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp