Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Vertex algebraic structure of principal subspaces of basic \(A_{2n}^{(2)}\)-modules.(English)Zbl 1395.17059

Summary: We obtain a presentation of the principal subspace of the basic \(A_{2n}^{(2)}\)-module, \(n\geq 1\). We show that its full character is given by the Nahm sum of the tadpole Dynkin diagram \(T_n = A_{2n} / \mathbb{Z}_2\). This character is conjecturally modular after certain specializations. We prove the modularity property in the case of the affine Lie algebra of type \(A_4^{(2)}\).

MSC:

17B69 Vertex operators; vertex operator algebras and related structures
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
11P84 Partition identities; identities of Rogers-Ramanujan type

Cite

References:

[1]Andrews, G., The Theory of Partitions, Encycl. Math. Appl., vol. 2 (1976), Addison-Wesley ·Zbl 0371.10001
[2]Butorac, M., Combinatorial bases of principal subspaces for the affine Lie algebra of type \(B_2^{(1)}\), J. Pure Appl. Algebra, 218, 424-447 (2014) ·Zbl 1281.17025
[3]Bringmann, K.; Calinescu, A.; Folsom, A.; Kimport, S., Graded dimensions of principal subspaces and modular Andrews-Gordon-type series, Commun. Contemp. Math., 16 (2014) ·Zbl 1295.11035
[4]Calinescu, C.; Lepowsky, J.; Milas, A., Vertex-algebraic structure of the principal subspaces of certain \(A_1^{(1)}\)-modules, I: level one case, Int. J. Math., 19, 71-92 (2008) ·Zbl 1184.17012
[5]Calinescu, C.; Lepowsky, J.; Milas, A., Vertex-algebraic structure of the principal subspaces of certain \(A_1^{(1)}\)-modules, II: higher level case, J. Pure Appl. Algebra, 212, 1928-1950 (2008) ·Zbl 1184.17013
[6]Calinescu, C.; Lepowsky, J.; Milas, A., Vertex-algebraic structure of the principal subspaces of level one modules for the untwisted affine Lie algebras of types A, D, E, J. Algebra, 323, 167-192 (2010) ·Zbl 1221.17032
[7]Calinescu, C.; Lepowsky, J.; Milas, A., Vertex-algebraic structure of principal subspaces of standard \(A_2^{(2)}\)-modules, I, Int. J. Math., 25 (2014) ·Zbl 1351.17027
[8]Cherednik, Ivan; Feigin, Boris, Rogers-Ramanujan type identities and Nil-DAHA ·Zbl 1298.33029
[9]Feigin, B.; Feigin, E.; Jimbo, M.; Miwa, T.; Mukhin, E., Principal \(sl_3\) subspaces and quantum Toda Hamiltonian, (Algebraic Analysis and Around. Algebraic Analysis and Around, Adv. Stud. Pure Math., vol. 54 (2009), Math. Soc. Japan: Math. Soc. Japan Tokyo), 109-166 ·Zbl 1206.17012
[10]Feigin, B.; Stoyanovsky, A., Quasi-particles models for the representations of Lie algebras and geometry of flag manifold ·Zbl 0905.17030
[11]Feigin, B.; Stoyanovsky, A., Functional models for representations of current algebras and semi-infinite Schubert cells, Funkc. Anal. Prilozh.. Funkc. Anal. Prilozh., Funct. Anal. Appl., 28, 55-72 (1994), (in Russian); translation in: ·Zbl 0905.17030
[12]Frenkel, I.; Lepowsky, J.; Meurman, A., Vertex operator calculus, (Yau, S.-T., Mathematical Aspects of String Theory, Proc. 1986 Conference. Mathematical Aspects of String Theory, Proc. 1986 Conference, San Diego (1987), World Scientific: World Scientific Singapore), 150-188 ·Zbl 0657.17010
[13]Jerkovic, M., Recurrences and characters of Feigin-Stoyanovsky’s type subspaces. Vertex operator algebras and related areas, Contemp. Math., 497, 113-123 (2009) ·Zbl 1230.17017
[14]Kirillov, A., Dilogarithm identities, Prog. Theor. Phys. Suppl., 118, 61-142 (1995) ·Zbl 0894.11052
[15]Mc Laughlin, J.; Sills, A.; Zimmer, P., Rogers-Ramanujan-Slater type identities, Electron. J. Comb. (2008), Dynamic Survey DS15 ·Zbl 1153.33005
[16]Lepowsky, J., Calculus of twisted vertex operators, Proc. Natl. Acad. Sci. USA, 82, 8295-8299 (1985) ·Zbl 0579.17010
[17]Lepowsky, J.; Li, H., Introduction to Vertex Operator Algebras and Their Representations, Prog. Math., vol. 227 (2003), Birkhäuser: Birkhäuser Boston
[18]Li, H.-S., The physics superselection principle in vertex operator algebra theory, J. Algebra, 196, 436-457 (1997) ·Zbl 0885.17019
[19]Milas, A.; Penn, M., Lattice vertex algebras and combinatorial bases: general case and \(W\)-algebras, N.Y. J. Math., 18, 621-650 (2012) ·Zbl 1290.17025
[20]Nahm, W., Conformal field theory and torsion elements of the Bloch group, (Frontiers in Number Theory, Physics, and Geometry II (2007)), 67-132 ·Zbl 1193.81092
[21]Penn, M., Lattice vertex superalgebras I: presentation of the principal subspace, Commun. Algebra, 42, 3, 933-961 (2014) ·Zbl 1347.17015
[22]Sadowski, C., Presentations of the principal subspaces of higher level \(\hat{sl(3)} \)-modules, J. Pure Appl. Algebra, 219, 2300-2345 (2015) ·Zbl 1333.17019
[23]Vlasenko, M.; Zwegers, S., Nahm’s conjecture: asymptotic computations and counterexamples, Commun. Number Theory Phys., 5, 617-642 (2011) ·Zbl 1256.81102
[24]Warnaar, O.; Zudilin, W., Dedekind’s eta-function and Rogers-Ramanujan identities, Bull. Lond. Math. Soc., 44, 1-11 (2012) ·Zbl 1234.05040
[25]Zagier, D., The dilogarithm function, (Cartier, P.; Julia, B.; Moussa, P.; Vanhove, P., Frontiers in Number Theory, Physics, and Geometry II (2006), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York), 3-65 ·Zbl 1176.11026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp