[1] | Andrews, G., The Theory of Partitions, Encycl. Math. Appl., vol. 2 (1976), Addison-Wesley ·Zbl 0371.10001 |
[2] | Butorac, M., Combinatorial bases of principal subspaces for the affine Lie algebra of type \(B_2^{(1)}\), J. Pure Appl. Algebra, 218, 424-447 (2014) ·Zbl 1281.17025 |
[3] | Bringmann, K.; Calinescu, A.; Folsom, A.; Kimport, S., Graded dimensions of principal subspaces and modular Andrews-Gordon-type series, Commun. Contemp. Math., 16 (2014) ·Zbl 1295.11035 |
[4] | Calinescu, C.; Lepowsky, J.; Milas, A., Vertex-algebraic structure of the principal subspaces of certain \(A_1^{(1)}\)-modules, I: level one case, Int. J. Math., 19, 71-92 (2008) ·Zbl 1184.17012 |
[5] | Calinescu, C.; Lepowsky, J.; Milas, A., Vertex-algebraic structure of the principal subspaces of certain \(A_1^{(1)}\)-modules, II: higher level case, J. Pure Appl. Algebra, 212, 1928-1950 (2008) ·Zbl 1184.17013 |
[6] | Calinescu, C.; Lepowsky, J.; Milas, A., Vertex-algebraic structure of the principal subspaces of level one modules for the untwisted affine Lie algebras of types A, D, E, J. Algebra, 323, 167-192 (2010) ·Zbl 1221.17032 |
[7] | Calinescu, C.; Lepowsky, J.; Milas, A., Vertex-algebraic structure of principal subspaces of standard \(A_2^{(2)}\)-modules, I, Int. J. Math., 25 (2014) ·Zbl 1351.17027 |
[8] | Cherednik, Ivan; Feigin, Boris, Rogers-Ramanujan type identities and Nil-DAHA ·Zbl 1298.33029 |
[9] | Feigin, B.; Feigin, E.; Jimbo, M.; Miwa, T.; Mukhin, E., Principal \(sl_3\) subspaces and quantum Toda Hamiltonian, (Algebraic Analysis and Around. Algebraic Analysis and Around, Adv. Stud. Pure Math., vol. 54 (2009), Math. Soc. Japan: Math. Soc. Japan Tokyo), 109-166 ·Zbl 1206.17012 |
[10] | Feigin, B.; Stoyanovsky, A., Quasi-particles models for the representations of Lie algebras and geometry of flag manifold ·Zbl 0905.17030 |
[11] | Feigin, B.; Stoyanovsky, A., Functional models for representations of current algebras and semi-infinite Schubert cells, Funkc. Anal. Prilozh.. Funkc. Anal. Prilozh., Funct. Anal. Appl., 28, 55-72 (1994), (in Russian); translation in: ·Zbl 0905.17030 |
[12] | Frenkel, I.; Lepowsky, J.; Meurman, A., Vertex operator calculus, (Yau, S.-T., Mathematical Aspects of String Theory, Proc. 1986 Conference. Mathematical Aspects of String Theory, Proc. 1986 Conference, San Diego (1987), World Scientific: World Scientific Singapore), 150-188 ·Zbl 0657.17010 |
[13] | Jerkovic, M., Recurrences and characters of Feigin-Stoyanovsky’s type subspaces. Vertex operator algebras and related areas, Contemp. Math., 497, 113-123 (2009) ·Zbl 1230.17017 |
[14] | Kirillov, A., Dilogarithm identities, Prog. Theor. Phys. Suppl., 118, 61-142 (1995) ·Zbl 0894.11052 |
[15] | Mc Laughlin, J.; Sills, A.; Zimmer, P., Rogers-Ramanujan-Slater type identities, Electron. J. Comb. (2008), Dynamic Survey DS15 ·Zbl 1153.33005 |
[16] | Lepowsky, J., Calculus of twisted vertex operators, Proc. Natl. Acad. Sci. USA, 82, 8295-8299 (1985) ·Zbl 0579.17010 |
[17] | Lepowsky, J.; Li, H., Introduction to Vertex Operator Algebras and Their Representations, Prog. Math., vol. 227 (2003), Birkhäuser: Birkhäuser Boston |
[18] | Li, H.-S., The physics superselection principle in vertex operator algebra theory, J. Algebra, 196, 436-457 (1997) ·Zbl 0885.17019 |
[19] | Milas, A.; Penn, M., Lattice vertex algebras and combinatorial bases: general case and \(W\)-algebras, N.Y. J. Math., 18, 621-650 (2012) ·Zbl 1290.17025 |
[20] | Nahm, W., Conformal field theory and torsion elements of the Bloch group, (Frontiers in Number Theory, Physics, and Geometry II (2007)), 67-132 ·Zbl 1193.81092 |
[21] | Penn, M., Lattice vertex superalgebras I: presentation of the principal subspace, Commun. Algebra, 42, 3, 933-961 (2014) ·Zbl 1347.17015 |
[22] | Sadowski, C., Presentations of the principal subspaces of higher level \(\hat{sl(3)} \)-modules, J. Pure Appl. Algebra, 219, 2300-2345 (2015) ·Zbl 1333.17019 |
[23] | Vlasenko, M.; Zwegers, S., Nahm’s conjecture: asymptotic computations and counterexamples, Commun. Number Theory Phys., 5, 617-642 (2011) ·Zbl 1256.81102 |
[24] | Warnaar, O.; Zudilin, W., Dedekind’s eta-function and Rogers-Ramanujan identities, Bull. Lond. Math. Soc., 44, 1-11 (2012) ·Zbl 1234.05040 |
[25] | Zagier, D., The dilogarithm function, (Cartier, P.; Julia, B.; Moussa, P.; Vanhove, P., Frontiers in Number Theory, Physics, and Geometry II (2006), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York), 3-65 ·Zbl 1176.11026 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.