[1] | R. A. Adams, Sobolev Spaces, Academic Press, London, 1975. ·Zbl 0314.46030 |
[2] | H. W. Alt; L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325, 105-144 (1981) ·Zbl 0449.35105 |
[3] | H. Azegami, A solution to domain optimization problems, Trans of Japan Soc. of Mech. Engs., Ser. A, 60 (1994), 1479-1486 (in Japanese). |
[4] | H. Azegami; Z. Q. Wu, Domain optimization analysis in linear elastic problems: approach using traction method, JSME Int J., Ser. A, 39, 272-278 (1996) |
[5] | H. Azegami, S. Kaizu, M. Shimoda and E. Katamine, Irregularity of shape optimization problems and an improvement technique, in Computer Aided Optimization Design of Structures V (S. Hernandez and C. A. Brebbia eds.), Computational Mechanics Publications, Southampton, (1997), 309-326. |
[6] | H. Azegami; Z. Takeuchi, A smoothing method for shape optimization: traction method using the Robin condition, Int. J. Comp. Meth-Sing., 3, 21-33 (2006) ·Zbl 1198.74055 |
[7] | H. Azegami; S. Fukumoto; T. Aoyama, Shape optimization of continua using nurbs as basis functions, Struct. Multidiscipl. Optimiz., 47, 247-258 (2013) ·Zbl 1274.49055 |
[8] | H. Azegami; L. Zhou; K. Umemura; N. Kondo, Shape optimization for a link mechanism, Struct. Multidiscipl. Optimiz., 48, 115-125 (2013) ·Zbl 1274.70003 |
[9] | B. Abda, F. Bouchon, G. Peichl, M. Sayeh and R. Touzani, A new formulation for the Bernoulli problem, in Proceedings of the 5^th International Conference on Inverse Problems, Control and Shape Optimization, (2010), 1-19. ·Zbl 1359.49014 |
[10] | J. Bacani, Methods of Shape Optimization in Free Boundary Problems, Ph. D. Thesis, Karl-Franzens-Universität Graz, Graz, Austria, 2013. |
[11] | J. B. Bacani and G. H. Peichl, On the first-order shape derivative of the Kohn-Vogelius cost functional of the Bernoulli problem, Abstr. Appl. Anal., 2013 (2013), Article ID 384320, 19 pp. ·Zbl 1290.49083 |
[12] | Z. Belhachmi; H. Meftahi, Shape sensitivity analysis for an interface problem via minimax differentiability, Appl.Math. Comput., 219, 6828-6842 (2013) ·Zbl 1286.65148 |
[13] | J. Céa, Numerical methods of shape optimal design, in Optimization of Distributed Parameter Structures 2 (E. J. Haug and J. Céa eds.), Sijthoff and Noordhoff, Alphen aan den Rijn, (1981), 1049-1088. ·Zbl 0517.73095 |
[14] | J. Céa, Conception optimale ou identification de formes, calcul rapide de la derivee dircetionelle de la fonction cout, Math. Mod. Numer. Anal., 20, 371-402 (1986) ·Zbl 0604.49003 |
[15] | D. Chenais, On the existence of a solution in a domain identification problem, J. Math. Anal. Appl., 189-219 (1975) ·Zbl 0317.49005 |
[16] | R. Correa; A. Seeger, Directional derivative of a minimax function, Nonlinear Anal., 9, 13-22 (1985) ·Zbl 0556.49007 |
[17] | M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, \(2^{nd}\) ed., Adv. Des. Control 22, SIAM, Philadelphia, 2011. ·Zbl 1251.49001 |
[18] | M. C. Delfour; J.-P. Zolésio, Shape sensitivity analysis via min max differentiability, SIAM J. Control Optim., 26, 834-862 (1988) ·Zbl 0654.49010 |
[19] | M. C. Delfour; J.-P. Zolésio, Velocity method and Lagrangian formulation for the computation of the shape Hessian, SIAM J. Control Optim., 29, 1414-1442 (1991) ·Zbl 0747.49007 |
[20] | I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland Publishing Co., Amsterdam, 1976. Translated from the French, Studies in Mathematics and its Applications, Vol. 1. ·Zbl 0322.90046 |
[21] | K. Eppler; H. Harbrecht, On a Kohn-Vogelius like formulation of free boundary problems, Comput. Optim. Appl., 52, 69-85 (2012) ·Zbl 1258.49069 |
[22] | K. Eppler; H. Harbrecht, Tracking Neumann data for stationary free boundary problems, SIAM J. Control Optim., 48, 2901-2916 (2009) ·Zbl 1202.49052 |
[23] | K. Eppler; H. Harbrecht, Tracking the Dirichlet data in \(L^2\) is an ill-posed problem, J. Optim. Theory Appl., 145, 17-35 (2010) ·Zbl 1217.49031 |
[24] | K. Eppler and H. Harbrecht, Shape optimization for free boundary problems-analysis and numerics, in Constrained Optimization and Optimal Control for Partial Differential Equations, 160 (2012), 277-288. ·Zbl 1356.49073 |
[25] | L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, USA, 1998. ·Zbl 0902.35002 |
[26] | M. Flucher; M. Rumpf, Bernoulli’s free-boundary problem, qualitative theory and numerical approximation, J. Reine Angew. Math., 486, 165-204 (2003) ·Zbl 0909.35154 |
[27] | P. Grisvard, Elliptic Problems in Non-smooth Domains, Pitman Publishing, Marshfield, Massachussetts, USA, 1985. ·Zbl 0695.35060 |
[28] | A. Friedman, Free boundary problems in science and technology, Notices of the AMS, 47, 854-861 (2000) ·Zbl 1040.35145 |
[29] | Z. Gao; Y. Ma, Shape gradient of the dissipated energy functional in shape optimization for the viscous incompressible flow, Appl Numer Math., 58, 1720-1741 (2008) ·Zbl 1148.76023 |
[30] | Z. Gao; Y. Ma; H. W. Zhuang, Shape Hessian for generalized Oseen flow by differentiability of a minimax: a Lagrangian approach, Czech. Math. J., 57, 987-1011 (2007) ·Zbl 1174.76008 |
[31] | D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983. ·Zbl 0562.35001 |
[32] | J. Hadamard, Mémoire sur le probleme d’analyse relatif a l’équilibre des plaques élastiques, in Mémoire des savants étrangers, 33, 1907, Œuvres de Jacques Hadamard, editions du C. N. R. S., Paris, (1968), 515-641. |
[33] | J. Haslinger; K. Ito; T. Kozubek; K. Kunisch; G. Peichl, On the shape derivative for problems of Bernoulli type, Interfaces Free Bound., 1, 317-330 (2009) ·Zbl 1178.49055 |
[34] | J. Haslinger; T. Kozubek; K. Kunisch; G. Peichl, Shape optimization and fictitious domain approach for solving free boundary problems of Bernoulli type, Comput. Optim. Appl., 26, 231-251 (2003) ·Zbl 1077.49030 |
[35] | J. Haslinger; T. Kozubek; K. Kunisch; G. Peichl, Fictitious domain methods in shape optimization with applications in free-boundary problems, Comput. Optim. Appl., 26, 231-251 (2003) ·Zbl 1077.49030 |
[36] | J. Haslinger; T. Kozubek; K. Kunisch; G. Peichl, An embedding domain approach for a class of 2-d shape optimization problems: mathematical analysis, J. Math. Anal. Appl., 290, 665-685 (2004) ·Zbl 1034.49042 |
[37] | F. Hecht, New development in FreeFem++, J. Numer. Math., 20, 251-265 (2012) ·Zbl 1266.68090 |
[38] | A. Henrot; A. Shangholian, Convexity of free boundaries with Bernoulli type boundary condition, Nonlinear Anal., 28, 815-823 (1997) ·Zbl 0863.35117 |
[39] | M. H. Imam, Three dimensional shape optimization, Int. J. Num. Meth. Engrg., 18, 661-673 (1982) ·Zbl 0482.73071 |
[40] | H. Kasumba, Shape optimization approaches to free-surface problems, Int. J. Numer. Meth. Fluids, 74, 818-845 (2014) ·Zbl 1455.65134 |
[41] | K. Ito; K. Kunisch; G. Peichl, Variational approach to shape derivatives, ESAIM Control Optim. Calc. Var., 14, 517-539 (2008) ·Zbl 1357.49148 |
[42] | K. Ito; K. Kunisch; G. Peichl, Variational approach to shape derivative for a class of Bernoulli problem, J. Math. Anal. Appl., 314, 126-149 (2006) ·Zbl 1088.49028 |
[43] | A. Laurain; H. Meftahi, Shape and parameter reconstruction for the Robin inverse problem, J. Inverse Ill-Posed Probl., 24, 643-662 (2016) ·Zbl 1354.49078 |
[44] | J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Berlin Heidelberg: Springer-Verlag, 1971. ·Zbl 0203.09001 |
[45] | H. Meftahi, Stability analysis in the inverse Robin transmission problem, Math. Methods Appl. Sci., 40, 2505-2521 (2016) ·Zbl 1365.35228 |
[46] | J. Neuberger, in Sobolev Gradients and Differential Equations (J-M. Morel and B. Teissier eds.), Lecture Notes in Mathematics. Springer: Berlin, 2010. ·Zbl 1203.35004 |
[47] | H. Meftahi; J.-P. Zolésio, Sensitivity analysis for some inverse problems in linear elasticity via minimax differentiability, Appl. Math. Model, 39, 1554-1576 (2015) ·Zbl 1443.49050 |
[48] | O. Pironneau and B. Mohammadi, Applied Shape Optimization in Fluid, Oxford University Press Inc: New York, 2001. ·Zbl 0970.76003 |
[49] | J. F. T. Rabago, Shape Optimization for the Bernoulli Free Boundary Problem Via Céa’s Classical Lagrange Method and Min-Max Differentiability of the Lagrangian, M. Sc. Thesis, University of the Philippines Baguio, Philippines, 2016. |
[50] | J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization, Springer, Berlin, Germany, 1991. |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.