[1] | Astala, K., P. Jones, A. Kupiainen, and E. Saksman: Random conformal welding. - Acta Math. 207, 2011, 203-254. ·Zbl 1253.30032 |
[2] | Bishop, C. J.: Conformal welding of rectifiable curves. - Math. Scand. 67, 1990, 61-72. ·Zbl 0689.30008 |
[3] | Bishop, C. J.: Some homeomorphisms of the sphere conformal off a curve. - Ann. Acad. Sci. Fenn. Ser. A I Math. 19, 1994, 323-338. ·Zbl 0810.30007 |
[4] | Bishop, C. J.: Conformal welding and Koebe’s theorem. - Ann. of Math. (2) 166, 2007, 613- 656. ·Zbl 1144.30007 |
[5] | Carleson, L.: Selected problems on exceptional sets. - D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, 1997. ·Zbl 0189.10903 |
[6] | Ebenfelt, P., D. Khavinson, and H. S. Shapiro: Two-dimensional shapes and lemniscates. - Complex analysis and dynamical systems IV. Part 1, 553, 2011, 45-59. ·Zbl 1246.37062 |
[7] | Fortier Bourque, M.: Applications quasiconformes et soudure conforme. - Masters Thesis, Université Laval, 2010. |
[8] | Hamilton, D. H.: Generalized conformal welding. - Ann. Acad. Sci. Fenn. Ser. A I Math. 16, 1991, 333-343. ·Zbl 0754.30014 |
[9] | Hamilton, D. J.: Conformal welding. - Handbook of complex analysis: geometric function theory 1, 2002, 137-146. ·Zbl 1081.30013 |
[10] | He, Z.-X., and O. Schramm: Rigidity of circle domains whose boundary has σ-finite linear measure. - Invent. Math. 115, 1994, 297-310. ·Zbl 0809.30006 |
[11] | Kahn, J.: Holomorphic removability of Julia sets. - arXiv:math/9812164, 1998. |
[12] | Kahn, J., and M. Lyubich: The quasi-additivity law in conformal geometry. - Ann. of Math. (2) 169, 2009, 561-593. ·Zbl 1203.30011 |
[13] | Kahn, J., and M. Lyubich: Local connectivity of Julia sets for unicritical polynomials. - Ann. of Math. (2) 170, 2009, 413-426. ·Zbl 1180.37072 |
[14] | Katznelson, Y., S. Nag, and D. Sullivan: On conformal welding homeomorphisms associated to Jordan curves. - Ann. Acad. Sci. Fenn. Ser. A I Math. 15, 1990, 293-306 ·Zbl 0688.30003 |
[15] | Kaufman, R.: Fourier-Stieltjes coefficients and continuation of functions. - Ann. Acad. Sci. Fenn. Ser. A I Math. 9, 1984, 27-31. ·Zbl 0565.30016 |
[16] | Lehto, O.: Homeomorphisms with a prescribed dilatation. - Lecture Notes in Math. 118, 1968, 58-73. ·Zbl 0193.03703 |
[17] | Lehto, O., and K. I. Virtanen: On the existence of quasiconformal mappings with prescribed complex dilatation. - Ann. Acad. Sci. Fenn. Ser. A I Math. 274, 1960, 1-24. ·Zbl 0090.05201 |
[18] | Lehto, O., and K. I. Virtanen: Quasiconformal mappings in the plane. - Springer-Verlag, New York-Heidelberg, 1973. ·Zbl 0267.30016 |
[19] | Lind, J., and S. Rohde: Space-filling curves and phases of the Loewner equation. - Indiana Univ. Math. J. 61, 2012, 2231-2249. ·Zbl 1283.30009 |
[20] | Marshall, D. E.: Conformal welding for finitely connected regions. - Comput. Methods Funct. Theory 11, 2011, 655-669. ·Zbl 1252.30002 |
[21] | Marshall, D. E., and S. Rohde: The zipper algorithm for conformal maps and the computation of Shabat polynomials and dessins. - In preparation. |
[22] | Miller, J., and S. Sheffield: Liouville quantum gravity and the Brownian map I: the QLE(8/3, 0) metric. - arXiv:1507.00719, 2015. |
[23] | Miller, J., and S. Sheffield: Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding. - arXiv:1605.03563, 2016. ·Zbl 1478.60045 |
[24] | Miller, J., and S. Sheffield: Liouville quantum gravity and the Brownian map III: the conformal structure is determined. - arXiv:1608.05391, 2016. ·Zbl 1478.60044 |
[25] | Oikawa, K.: Welding of polygons and the type of Riemann surfaces. - K¯odai Math. Sem. Rep. 13, 1961, 37-52. ·Zbl 0129.05702 |
[26] | Pfluger, A.: Ueber die Konstruktion Riemannscher Flächen durch Verheftung. - J. Indian Math. Soc. (N.S.) 24, 1960, 401-412. ·Zbl 0112.05303 |
[27] | Rohde, S.: Conformal laminations and Gehring trees. - Preprint. |
[28] | Schippers, E., and W. Staubach: A symplectic functional analytic proof of the conformal welding theorem. - Proc. Amer. Math. Soc. 143, 2015, 265-278. ·Zbl 1310.30008 |
[29] | Sheffield, S.: Conformal weldings of random surfaces: SLE and the quantum gravity zipper. - Ann. Probab. 44, 2016, 3474-3545. ·Zbl 1388.60144 |
[30] | Sharon, E., and D. Mumford: 2d-shape analysis using conformal mapping. - 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2, 2004, 350-357. ·Zbl 1477.68492 |
[31] | Vainio, J. V.: Conditions for the possibility of conformal sewing. - Ann. Acad. Sci. Fenn. Ser. A I Math. Diss. 53, 1985, 1-43. ·Zbl 0549.30033 |
[32] | Younsi, M.: On removable sets for holomorphic functions. - EMS Surv. Math. Sci. 2, 2015, 219-254. ·Zbl 1331.30002 |
[33] | Younsi, M.: Removability, rigidity of circle domains and Koebe’s conjecture. - Adv. Math. 303, 2016, 1300-1318. ·Zbl 1353.30007 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.