Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Removability and non-injectivity of conformal welding.(English)Zbl 1392.30006

The author constructs a non-removable Jordan curve \(\Gamma\) and a non-Möbius homeomorphism of the Riemann sphere \(\hat{\mathbb C}\) which is conformal on the complement of \(\Gamma\) and \(F(\Gamma)=\Gamma\). Denote \(\mathbb D:=\{z\in\mathbb C:|z|<1\}\), \(\mathbb D^*:=\{z\in\mathbb C:|z|>1\}\) and \(\mathbb T=\partial\mathbb D\). Given a closed Jordan curve \(\Gamma\), let \(f\) and \(g\) be conformal maps from \(\mathbb D\) and \(\mathbb D^*\) onto \(\Omega\) and \(\Omega^*\) which are bounded and unbounded complementary components of \(\Gamma\), respectively. Extend \(f\) and \(g\) continuously on the closure of their respective domains, so that \(h_{\Gamma}=g^{-1}\circ f:\mathbb T\to\mathbb T\) defines an orientation-preserving homeomorphism of \(\mathbb T\), called the conformal welding homeomorphism of \(\Gamma\).
A compact set \(E\subset\mathbb C\) is said to be conformally removable if every \(F\in\text{CH}(E)\) is Möbius, where \(\text{CH}(E)\) is the collection of homeomorphisms \(F:\hat{\mathbb C}\to\hat{\mathbb C}\) which are conformal on \(\hat{\mathbb C}\setminus E\). If a Jordan curve \(\Gamma\) is conformally removable, then \(\Gamma\) uniquely corresponds to its conformal welding homeomorphism, modulo Möbius equivalence. The author aims to answer the question whether the converse holds.
Question 1.2: If \(\Gamma\) is a non-removable Jordan curve, does there necessarily exist another curve having the same welding homeomorphism, but which is not a Möbius image of \(\Gamma\)?
The author proves the affirmative.
Theorem 1.3: There exists a Jordan curve \(\Gamma\) and a non-Möbius homeomorphism \(F:\hat{\mathbb C}\to\hat{\mathbb C}\) conformal on \(\hat{\mathbb C}\setminus\Gamma\) such that \(F(\Gamma)=\Gamma\). Moreover, the curve \(\Gamma\) may be taken to have zero area.
The construction is based on Bishop’s notion of so-called flexible curves \(\Gamma\) defined by the two conditions: given any Jordan curve \(\tilde\Gamma\) and \(\epsilon>0\), there exists \(F\in\text{CH}(\Gamma)\) such that \(d(F(\Gamma),\tilde\Gamma)<\epsilon\), where \(d\) is the Hausdorff distance, and, given points \(z_1,z_2\) in each complementary component of \(\Gamma\) and points \(w_1,w_2\) in each complementary component of \(\tilde\Gamma\), we can choose \(F\) so that \(F(z_1)=w_1\) and \(F(z_2)=w_2\).
Finally, the author discusses the non-injectivity of conformal welding for curves of positive area and poses open problems related to Question 1.2.

MSC:

30C35 General theory of conformal mappings
37E10 Dynamical systems involving maps of the circle
30C85 Capacity and harmonic measure in the complex plane

Cite

References:

[1]Astala, K., P. Jones, A. Kupiainen, and E. Saksman: Random conformal welding. - Acta Math. 207, 2011, 203-254. ·Zbl 1253.30032
[2]Bishop, C. J.: Conformal welding of rectifiable curves. - Math. Scand. 67, 1990, 61-72. ·Zbl 0689.30008
[3]Bishop, C. J.: Some homeomorphisms of the sphere conformal off a curve. - Ann. Acad. Sci. Fenn. Ser. A I Math. 19, 1994, 323-338. ·Zbl 0810.30007
[4]Bishop, C. J.: Conformal welding and Koebe’s theorem. - Ann. of Math. (2) 166, 2007, 613- 656. ·Zbl 1144.30007
[5]Carleson, L.: Selected problems on exceptional sets. - D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, 1997. ·Zbl 0189.10903
[6]Ebenfelt, P., D. Khavinson, and H. S. Shapiro: Two-dimensional shapes and lemniscates. - Complex analysis and dynamical systems IV. Part 1, 553, 2011, 45-59. ·Zbl 1246.37062
[7]Fortier Bourque, M.: Applications quasiconformes et soudure conforme. - Masters Thesis, Université Laval, 2010.
[8]Hamilton, D. H.: Generalized conformal welding. - Ann. Acad. Sci. Fenn. Ser. A I Math. 16, 1991, 333-343. ·Zbl 0754.30014
[9]Hamilton, D. J.: Conformal welding. - Handbook of complex analysis: geometric function theory 1, 2002, 137-146. ·Zbl 1081.30013
[10]He, Z.-X., and O. Schramm: Rigidity of circle domains whose boundary has σ-finite linear measure. - Invent. Math. 115, 1994, 297-310. ·Zbl 0809.30006
[11]Kahn, J.: Holomorphic removability of Julia sets. - arXiv:math/9812164, 1998.
[12]Kahn, J., and M. Lyubich: The quasi-additivity law in conformal geometry. - Ann. of Math. (2) 169, 2009, 561-593. ·Zbl 1203.30011
[13]Kahn, J., and M. Lyubich: Local connectivity of Julia sets for unicritical polynomials. - Ann. of Math. (2) 170, 2009, 413-426. ·Zbl 1180.37072
[14]Katznelson, Y., S. Nag, and D. Sullivan: On conformal welding homeomorphisms associated to Jordan curves. - Ann. Acad. Sci. Fenn. Ser. A I Math. 15, 1990, 293-306 ·Zbl 0688.30003
[15]Kaufman, R.: Fourier-Stieltjes coefficients and continuation of functions. - Ann. Acad. Sci. Fenn. Ser. A I Math. 9, 1984, 27-31. ·Zbl 0565.30016
[16]Lehto, O.: Homeomorphisms with a prescribed dilatation. - Lecture Notes in Math. 118, 1968, 58-73. ·Zbl 0193.03703
[17]Lehto, O., and K. I. Virtanen: On the existence of quasiconformal mappings with prescribed complex dilatation. - Ann. Acad. Sci. Fenn. Ser. A I Math. 274, 1960, 1-24. ·Zbl 0090.05201
[18]Lehto, O., and K. I. Virtanen: Quasiconformal mappings in the plane. - Springer-Verlag, New York-Heidelberg, 1973. ·Zbl 0267.30016
[19]Lind, J., and S. Rohde: Space-filling curves and phases of the Loewner equation. - Indiana Univ. Math. J. 61, 2012, 2231-2249. ·Zbl 1283.30009
[20]Marshall, D. E.: Conformal welding for finitely connected regions. - Comput. Methods Funct. Theory 11, 2011, 655-669. ·Zbl 1252.30002
[21]Marshall, D. E., and S. Rohde: The zipper algorithm for conformal maps and the computation of Shabat polynomials and dessins. - In preparation.
[22]Miller, J., and S. Sheffield: Liouville quantum gravity and the Brownian map I: the QLE(8/3, 0) metric. - arXiv:1507.00719, 2015.
[23]Miller, J., and S. Sheffield: Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding. - arXiv:1605.03563, 2016. ·Zbl 1478.60045
[24]Miller, J., and S. Sheffield: Liouville quantum gravity and the Brownian map III: the conformal structure is determined. - arXiv:1608.05391, 2016. ·Zbl 1478.60044
[25]Oikawa, K.: Welding of polygons and the type of Riemann surfaces. - K¯odai Math. Sem. Rep. 13, 1961, 37-52. ·Zbl 0129.05702
[26]Pfluger, A.: Ueber die Konstruktion Riemannscher Flächen durch Verheftung. - J. Indian Math. Soc. (N.S.) 24, 1960, 401-412. ·Zbl 0112.05303
[27]Rohde, S.: Conformal laminations and Gehring trees. - Preprint.
[28]Schippers, E., and W. Staubach: A symplectic functional analytic proof of the conformal welding theorem. - Proc. Amer. Math. Soc. 143, 2015, 265-278. ·Zbl 1310.30008
[29]Sheffield, S.: Conformal weldings of random surfaces: SLE and the quantum gravity zipper. - Ann. Probab. 44, 2016, 3474-3545. ·Zbl 1388.60144
[30]Sharon, E., and D. Mumford: 2d-shape analysis using conformal mapping. - 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2, 2004, 350-357. ·Zbl 1477.68492
[31]Vainio, J. V.: Conditions for the possibility of conformal sewing. - Ann. Acad. Sci. Fenn. Ser. A I Math. Diss. 53, 1985, 1-43. ·Zbl 0549.30033
[32]Younsi, M.: On removable sets for holomorphic functions. - EMS Surv. Math. Sci. 2, 2015, 219-254. ·Zbl 1331.30002
[33]Younsi, M.: Removability, rigidity of circle domains and Koebe’s conjecture. - Adv. Math. 303, 2016, 1300-1318. ·Zbl 1353.30007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp