Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Braided tensor categories and extensions of vertex operator algebras.(English)Zbl 1388.17014

Summary: Let \(V\) be a vertex operator algebra satisfying suitable conditions such that in particular its module category has a natural vertex tensor category structure, and consequently, a natural braided tensor category structure. We prove that the notions of extension (i.e., enlargement) of \(V\) and of commutative associative algebra, with uniqueness of unit and with trivial twist, in the braided tensor category of \(V\)-modules are equivalent.

MSC:

17B69 Vertex operators; vertex operator algebras and related structures
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)

Cite

References:

[1]Felder G., Fröhlich J., Fuchs J., Schweigert C.: Correlation functions and boundary conditions in rational conformal field theory and three-dimensional topology. Compos. Math. 131, 189-237 (2002) ·Zbl 1002.81045 ·doi:10.1023/A:1014903315415
[2]Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Am. Math. Soc. 104 (1993) ·Zbl 0789.17022
[3]Frenkel I.B., Lepowsky J., Meurman A.: Vertex Operator Algebras and the Monster. Pure and Appl. Math., vol. 134. Academic Press, Boston (1988) ·Zbl 0674.17001
[4]Höhn, G.: Genera of vertex operator algebras and three dimensional topological quantum field theories, In: Vertex Operator Algebras in Mathematics and Physics (Toronto, 2000), Fields Inst. Commun., vol. 39, Am. Math. Soc., Providence, 2003, pp. 89-107 ·Zbl 1103.17008
[5]Huang Y.-Z.: A theory of tensor products for module categories for a vertex operator algebra, IV. J. Pure Appl. Algebra 100, 173-216 (1995) ·Zbl 0841.17015 ·doi:10.1016/0022-4049(95)00050-7
[6]Huang Y.-Z.: Virasoro vertex operator algebras, (nonmeromorphic) operator product expansion and the tensor product theory. J. Algbra 182, 201-234 (1996) ·Zbl 0862.17022 ·doi:10.1006/jabr.1996.0168
[7]Huang Y.-Z.: Generalized rationality and a generalized Jacobi identity for intertwining operator algebras. Sel. Math. (N.S.) 6, 225-267 (2000) ·Zbl 1013.17026 ·doi:10.1007/PL00001389
[8]Huang Y.-Z.: Differential equations and intertwining operators. Commun. Contemp. Math. 7, 375-400 (2005) ·Zbl 1070.17012 ·doi:10.1142/S0219199705001799
[9]Huang Y.-Z.: Rigidity and modularity of vertex tensor categories. Commun. Contemp. Math. 10, 871-911 (2008) ·Zbl 1169.17019 ·doi:10.1142/S0219199708003083
[10]Huang Y.-Z.: Cofiniteness conditions, projective covers and the logarithmic tensor product theory. J. Pure Appl. Algebra 213, 458-475 (2009) ·Zbl 1225.17032 ·doi:10.1016/j.jpaa.2008.07.016
[11]Huang Y.-Z., Kong L.: Open-string vertex algebras, tensor categories and operads. Commun. Math. Phys. 250, 433-471 (2004) ·Zbl 1083.17010 ·doi:10.1007/s00220-004-1059-x
[12]Huang, Y.-Z., Lepowsky, J. : Toward a theory of tensor products for representations of a vertex operator algebra. In: S. Catto, S., Rocha, A. (eds.) Proceedings of 20th International Conference on Differential Geometric Methods in Theoretical Physics, New York, 1991, World Scientific, Singapore, 1992, vol. 1, pp. 344-354 ·Zbl 0829.17025
[13]Huang, Y.-Z., Lepowsky, J.: Tensor products of modules for a vertex operator algebra and vertex tensor categories. In: Brylinski, R., Brylinski, J.-L., Guillemin, V., Kac, V. (eds.) Lie Theory and Geometry, in Honor of Bertram Kostant. Birkhäuser, Boston, 1994, pp. 349-383 ·Zbl 0848.17031
[14]Huang Y.-Z., Lepowsky J.: A theory of tensor products for module categories for a vertex operator algebra I. Sel. Math. (New Series) 1, 699-756 (1995) ·Zbl 0854.17032 ·doi:10.1007/BF01587908
[15]Huang Y.-Z., Lepowsky J.: A theory of tensor products for module categories for a vertex operator algebra, II. Sel. Math. (New Series) 1, 757-786 (1995) ·Zbl 0854.17033 ·doi:10.1007/BF01587909
[16]Huang Y.-Z., Lepowsky J.: A theory of tensor products for module categories for a vertex operator algebra, III. J. Pure Appl. Algebra 100, 141-171 (1995) ·Zbl 0841.17014 ·doi:10.1016/0022-4049(95)00049-3
[17]Huang Y.-Z., Lepowsky J.: Intertwining operator algebras and vertex tensor categories for affine Lie algebras. Duke Math. J. 99, 113-134 (1999) ·Zbl 0953.17016 ·doi:10.1215/S0012-7094-99-09905-2
[18]Huang, Y.-Z., Lepowsky, J.: A theory of tensor products for module categories for a vertex operator algebra, V. (to appear) ·Zbl 0854.17033
[19]Kirillov A. Jr., Ostrik V.: On a q-analog of the McKay correspondence and the ADE classification of \[{\widehat{\mathfrak{sl}}_2}\] sl^2 conformal field theories. Adv. Math. 171, 183-227 (2002) ·Zbl 1024.17013 ·doi:10.1006/aima.2002.2072
[20]Kong L.: Full field algebras, operads and tensor categories. Adv. Math. 213, 271-340 (2007) ·Zbl 1115.18002 ·doi:10.1016/j.aim.2006.12.007
[21]Moore G., Seiberg N.: Classical and quantum conformal field theory. Commun. Math. Phys. 123, 177-254 (1989) ·Zbl 0694.53074 ·doi:10.1007/BF01238857
[22]Pareigis B.: On braiding and dyslexia. J. Algebra 171, 413-425 (1995) ·Zbl 0816.18003 ·doi:10.1006/jabr.1995.1019
[23]Zhu Y.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9, 237-307 (1996) ·Zbl 0854.17034 ·doi:10.1090/S0894-0347-96-00182-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp