17B69 | Vertex operators; vertex operator algebras and related structures |
18D10 | Monoidal, symmetric monoidal and braided categories (MSC2010) |
[1] | Felder G., Fröhlich J., Fuchs J., Schweigert C.: Correlation functions and boundary conditions in rational conformal field theory and three-dimensional topology. Compos. Math. 131, 189-237 (2002) ·Zbl 1002.81045 ·doi:10.1023/A:1014903315415 |
[2] | Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Am. Math. Soc. 104 (1993) ·Zbl 0789.17022 |
[3] | Frenkel I.B., Lepowsky J., Meurman A.: Vertex Operator Algebras and the Monster. Pure and Appl. Math., vol. 134. Academic Press, Boston (1988) ·Zbl 0674.17001 |
[4] | Höhn, G.: Genera of vertex operator algebras and three dimensional topological quantum field theories, In: Vertex Operator Algebras in Mathematics and Physics (Toronto, 2000), Fields Inst. Commun., vol. 39, Am. Math. Soc., Providence, 2003, pp. 89-107 ·Zbl 1103.17008 |
[5] | Huang Y.-Z.: A theory of tensor products for module categories for a vertex operator algebra, IV. J. Pure Appl. Algebra 100, 173-216 (1995) ·Zbl 0841.17015 ·doi:10.1016/0022-4049(95)00050-7 |
[6] | Huang Y.-Z.: Virasoro vertex operator algebras, (nonmeromorphic) operator product expansion and the tensor product theory. J. Algbra 182, 201-234 (1996) ·Zbl 0862.17022 ·doi:10.1006/jabr.1996.0168 |
[7] | Huang Y.-Z.: Generalized rationality and a generalized Jacobi identity for intertwining operator algebras. Sel. Math. (N.S.) 6, 225-267 (2000) ·Zbl 1013.17026 ·doi:10.1007/PL00001389 |
[8] | Huang Y.-Z.: Differential equations and intertwining operators. Commun. Contemp. Math. 7, 375-400 (2005) ·Zbl 1070.17012 ·doi:10.1142/S0219199705001799 |
[9] | Huang Y.-Z.: Rigidity and modularity of vertex tensor categories. Commun. Contemp. Math. 10, 871-911 (2008) ·Zbl 1169.17019 ·doi:10.1142/S0219199708003083 |
[10] | Huang Y.-Z.: Cofiniteness conditions, projective covers and the logarithmic tensor product theory. J. Pure Appl. Algebra 213, 458-475 (2009) ·Zbl 1225.17032 ·doi:10.1016/j.jpaa.2008.07.016 |
[11] | Huang Y.-Z., Kong L.: Open-string vertex algebras, tensor categories and operads. Commun. Math. Phys. 250, 433-471 (2004) ·Zbl 1083.17010 ·doi:10.1007/s00220-004-1059-x |
[12] | Huang, Y.-Z., Lepowsky, J. : Toward a theory of tensor products for representations of a vertex operator algebra. In: S. Catto, S., Rocha, A. (eds.) Proceedings of 20th International Conference on Differential Geometric Methods in Theoretical Physics, New York, 1991, World Scientific, Singapore, 1992, vol. 1, pp. 344-354 ·Zbl 0829.17025 |
[13] | Huang, Y.-Z., Lepowsky, J.: Tensor products of modules for a vertex operator algebra and vertex tensor categories. In: Brylinski, R., Brylinski, J.-L., Guillemin, V., Kac, V. (eds.) Lie Theory and Geometry, in Honor of Bertram Kostant. Birkhäuser, Boston, 1994, pp. 349-383 ·Zbl 0848.17031 |
[14] | Huang Y.-Z., Lepowsky J.: A theory of tensor products for module categories for a vertex operator algebra I. Sel. Math. (New Series) 1, 699-756 (1995) ·Zbl 0854.17032 ·doi:10.1007/BF01587908 |
[15] | Huang Y.-Z., Lepowsky J.: A theory of tensor products for module categories for a vertex operator algebra, II. Sel. Math. (New Series) 1, 757-786 (1995) ·Zbl 0854.17033 ·doi:10.1007/BF01587909 |
[16] | Huang Y.-Z., Lepowsky J.: A theory of tensor products for module categories for a vertex operator algebra, III. J. Pure Appl. Algebra 100, 141-171 (1995) ·Zbl 0841.17014 ·doi:10.1016/0022-4049(95)00049-3 |
[17] | Huang Y.-Z., Lepowsky J.: Intertwining operator algebras and vertex tensor categories for affine Lie algebras. Duke Math. J. 99, 113-134 (1999) ·Zbl 0953.17016 ·doi:10.1215/S0012-7094-99-09905-2 |
[18] | Huang, Y.-Z., Lepowsky, J.: A theory of tensor products for module categories for a vertex operator algebra, V. (to appear) ·Zbl 0854.17033 |
[19] | Kirillov A. Jr., Ostrik V.: On a q-analog of the McKay correspondence and the ADE classification of \[{\widehat{\mathfrak{sl}}_2}\] sl^2 conformal field theories. Adv. Math. 171, 183-227 (2002) ·Zbl 1024.17013 ·doi:10.1006/aima.2002.2072 |
[20] | Kong L.: Full field algebras, operads and tensor categories. Adv. Math. 213, 271-340 (2007) ·Zbl 1115.18002 ·doi:10.1016/j.aim.2006.12.007 |
[21] | Moore G., Seiberg N.: Classical and quantum conformal field theory. Commun. Math. Phys. 123, 177-254 (1989) ·Zbl 0694.53074 ·doi:10.1007/BF01238857 |
[22] | Pareigis B.: On braiding and dyslexia. J. Algebra 171, 413-425 (1995) ·Zbl 0816.18003 ·doi:10.1006/jabr.1995.1019 |
[23] | Zhu Y.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9, 237-307 (1996) ·Zbl 0854.17034 ·doi:10.1090/S0894-0347-96-00182-8 |