34C23 | Bifurcation theory for ordinary differential equations |
34C05 | Topological structure of integral curves, singular points, limit cycles of ordinary differential equations |
34C07 | Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations |
[1] | Alvarez, M.J. Gasull, A. Monodromy and stability for nilpotent critical points. Int. J. Bifurcat. Chaos., 15: 1253-1265 (2005) ·Zbl 1088.34021 ·doi:10.1142/S0218127405012740 |
[2] | Alvarez, M.J., Gasull, A. Generating limit cycles from a nilpotent critical point via normal forms. J. Math. Anal. Appl., 318: 271-287 (2006) ·Zbl 1100.34030 ·doi:10.1016/j.jmaa.2005.05.064 |
[3] | Andreev, A.F., Sadovskii, A.P., Tsikalyuk, V.A. The center-focus problem for a system with homogeneous nonlinearities in the case of zero eigenvalues of the linear part. Diff. Equat., 39: 155-164 (2003) ·Zbl 1067.34030 ·doi:10.1023/A:1025192613518 |
[4] | Carr, J. Applications of Centre Manifold Theory. Appl. Math. Sci. Vol. 35, Springer, New York, 1981 ·Zbl 0464.58001 ·doi:10.1007/978-1-4612-5929-9 |
[5] | Chavarriga, J., Giacomini, H., Gine, J., Llibre, J. Local analytic integrability for nilpotent centers. Ergodic Theory Dyn. Syst., 23: 417-428 (2003) ·Zbl 1037.34025 ·doi:10.1017/S014338570200127X |
[6] | Giacomini, H., Gine, J., Llibre, J. The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems. J. Diff. Equat., 227: 406-426 (2006) ·Zbl 1111.34026 ·doi:10.1016/j.jde.2006.03.012 |
[7] | Gyllenberg, M., Yan, P. Four limit cycles for a 3D competitive Lotka-Volterra system with a heteroclinic cycle. Comput. Math. Appl., 58: 649-669 (2009) ·Zbl 1189.34080 ·doi:10.1016/j.camwa.2009.03.111 |
[8] | Hofbauer, J., So, J.W.-H. Multiple limit cycles for three dimensional Lotka-Volterra Equations. Appl. Math. Lett., 7: 65-70 (1994) ·Zbl 0816.34021 ·doi:10.1016/0893-9659(94)90095-7 |
[9] | Li, F., Liu, Y., Wu, Y. Center conditions and bifurcation of limit cycles at three-order nilpotent critical point in a seventh degree Lyapunov system. Communications in Nonlinear Science and Numerical Simulation, 16: 2598-2608 (2011) ·Zbl 1221.34079 ·doi:10.1016/j.cnsns.2010.06.017 |
[10] | Liu, Y., Li, J. Bifurcation of limit cycles and center problem for a class of cubic nilpotent system. Int. J. Bifurcat. Chaos, 20: 2579-2584 (2010) ·Zbl 1202.34064 ·doi:10.1142/S0218127410027210 |
[11] | Liu, Y., Li, J. On third-order nilpotent critical points: integral factor method. Int. J. Bifurcat. Chaos, 21: 1293-1309 (2011) ·Zbl 1248.34048 ·doi:10.1142/S0218127411029161 |
[12] | Lu, Z., Luo, Y. Two limit cycles in three-dimensional Lotka-Volterra systems. Comput. Math. Appl., 44: 51-66 (2002) ·Zbl 1014.34034 ·doi:10.1016/S0898-1221(02)00129-3 |
[13] | Moussu, R. Symetrie et forme normale des centres et foyers degeneres. Ergodic Theory Dyn. Syst., 2: 241-251 (1982) ·Zbl 0509.34027 ·doi:10.1017/S0143385700001553 |
[14] | Wang, Q., Huang, W., Li, B. Limit cycles and singular point quantities for a 3D Lotka-Volterra system. Applied Mathematics and Computation, 217: 8856-8859 (2010) ·Zbl 1220.34051 ·doi:10.1016/j.amc.2011.03.113 |
[15] | Wang, Q., Liu, Y., Chen, H. Hopf bifurcation for a class of three-dimensional nonlinear dynamic systems. Bull. Sci. Math., 134: 786-798 (2010) ·Zbl 1204.37051 ·doi:10.1016/j.bulsci.2009.12.001 |