60B20 | Random matrices (probabilistic aspects) |
60B10 | Convergence of probability measures |
15B52 | Random matrices (algebraic aspects) |
[1] | Akemann, G. and Ipsen, J. R. (2015). Recent exact and asymptotic results for products of independent random matrices.Acta Phys. Polon. B461747-1784. ·Zbl 1371.60008 ·doi:10.5506/APhysPolB.46.1747 |
[2] | Bloemendal, A., Erdös, L., Knowles, A., Yau, H.-T. and Yin, J. (2014). Isotropic local laws for sample covariance and generalized Wigner matrices.Electron. J. Probab.19(33) 1-53. ·Zbl 1288.15044 |
[3] | Bougerol, P. and Lacroix, J. (1985).Products of Random Matrices with Applications to Schrödinger Operators. Progress in Probability and Statistics8. Birkhäuser, Boston, MA. ·Zbl 0572.60001 |
[4] | Bourgain, J. (2005).Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies158. Princeton Univ. Press, Princeton, NJ. ·Zbl 1137.35001 |
[5] | Bourgain, J. and Schlag, W. (2000). Anderson localization for Schrödinger operators on \(\mathbf{Z}\) with strongly mixing potentials.Comm. Math. Phys.215143-175. ·Zbl 1040.81014 |
[6] | Cohen, J. E. and Newman, C. M. (1984). The stability of large random matrices and their products.Ann. Probab.12283-310. ·Zbl 0543.60098 ·doi:10.1214/aop/1176993291 |
[7] | Dorokhov, O. (1988). Solvable model of multichannel localization.Phys. Rev. B3710526-10541. |
[8] | Forrester, P. J. (2015). Asymptotics of finite system Lyapunov exponents for some random matrix ensembles.J. Phys. A48215205. ·Zbl 1323.15021 |
[9] | Furstenberg, H. (1963). Noncommuting random products.Trans. Amer. Math. Soc.108377-428. ·Zbl 0203.19102 ·doi:10.1090/S0002-9947-1963-0163345-0 |
[10] | Furstenberg, H. and Kesten, H. (1960). Products of random matrices.Ann. Math. Stat.31457-469. ·Zbl 0137.35501 ·doi:10.1214/aoms/1177705909 |
[11] | Goldsheid, I. and Margulis, G. (1989). Lyapunov indices of random matrix products.Uspekhi Mat. Nauk4413-60. |
[12] | Goldstein, M. and Schlag, W. (2001). Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions.Ann. of Math.(2)154155-203. ·Zbl 0990.39014 |
[13] | Isopi, M. and Newman, C. M. (1992). The triangle law for Lyapunov exponents of large random matrices.Comm. Math. Phys.143591-598. ·Zbl 0759.15019 ·doi:10.1007/BF02099267 |
[14] | Kargin, V. (2010). Products of random matrices: Dimension and growth in norm.Ann. Appl. Probab.20890-906. ·Zbl 1200.15022 ·doi:10.1214/09-AAP658 |
[15] | Kargin, V. (2014). On the largest Lyapunov exponent for products of Gaussian matrices.J. Stat. Phys.15770-83. ·Zbl 1307.15056 ·doi:10.1007/s10955-014-1077-9 |
[16] | Newman, C. M. (1986). The distribution of Lyapunov exponents: Exact results for random matrices.Comm. Math. Phys.103121-126. ·Zbl 0593.58051 ·doi:10.1007/BF01464284 |
[17] | Nguyen, H. and Vu, V. (2017). Normal vector of a random hyperplane.Int. Math. Res. Not. IMRN. To appear.DOI:10.1093/imrn/rnw273. ·Zbl 1405.15005 |
[18] | Oseledec, V. I. (1968). A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems.Tr. Mosk. Mat. Obs.19179-210. |
[19] | Pastur, L. and Figotin, A. (1992).Spectra of Random and Almost-Periodic Operators. Grundlehren der Mathematischen Wissenschaften[Fundamental Principles of Mathematical Sciences]297. Springer, Berlin. ·Zbl 0752.47002 |
[20] | Rudelson, M. and Vershynin, R. (2008). The Littlewood-Offord problem and invertibility of random matrices.Adv. Math.218600-633. ·Zbl 1139.15015 ·doi:10.1016/j.aim.2008.01.010 |
[21] | Rudelson, M. and Vershynin, R. (2009). Smallest singular value of a random rectangular matrix.Comm. Pure Appl. Math.621707-1739. ·Zbl 1183.15031 ·doi:10.1002/cpa.20294 |
[22] | Sadel, C. and Schulz-Baldes, H. (2010). Random Lie group actions on compact manifolds: A perturbative analysis.Ann. Probab.382224-2257. ·Zbl 1223.60053 ·doi:10.1214/10-AOP544 |
[23] | Tao, T. (2012).Topics in Random Matrix Theory. Amer. Math. Soc., Providence, RI. ·Zbl 1256.15020 |
[24] | Tao, T. and Vu, V. (2009). From the Littlewood-Offord problem to the circular law: Universality of the spectral distribution of random matrices.Bull. Amer. Math. Soc.(N.S.)46377-396. ·Zbl 1168.15018 ·doi:10.1090/S0273-0979-09-01252-X |
[25] | Tao, T. and Vu, V. (2010). Random matrices: The distribution of the smallest singular values.Geom. Funct. Anal.20260-297. ·Zbl 1210.60014 ·doi:10.1007/s00039-010-0057-8 |
[26] | Tao, T. and Vu, V. H. (2009). Inverse Littlewood-Offord theorems and the condition number of random discrete matrices.Ann. of Math.(2)169595-632. ·Zbl 1250.60023 ·doi:10.4007/annals.2009.169.595 |
[27] | Vershynin, R. ·Zbl 1291.15088 ·doi:10.1002/rsa.20429 |