[1] | B\'ar\'any, Bal\'azs, On the Ledrappier-Young formula for self-affine measures, Math. Proc. Cambridge Philos. Soc., 159, 3, 405-432 (2015) ·Zbl 1371.28015 ·doi:10.1017/S0305004115000419 |
[2] | Bourgain, J., On the Furstenberg measure and density of states for the Anderson-Bernoulli model at small disorder, J. Anal. Math., 117, 273-295 (2012) ·Zbl 1275.82006 ·doi:10.1007/s11854-012-0022-6 |
[3] | Bourgain, Jean, Finitely supported measures on \(SL_2(\mathbb{R})\) which are absolutely continuous at infinity. Geometric aspects of functional analysis, Lecture Notes in Math. 2050, 133-141 (2012), Springer, Heidelberg ·Zbl 1272.60004 ·doi:10.1007/978-3-642-29849-3\_7 |
[4] | B. B\'ar\'any and A. K\`“aenm\'”aki, Ledrappier-Young formula and exact dimensionality of self-affine measures, arXiv:1511.05792, 2015. |
[5] | Bliedtner, J.; Loeb, P., A reduction technique for limit theorems in analysis and probability theory, Ark. Mat., 30, 1, 25-43 (1992) ·Zbl 0757.28006 ·doi:10.1007/BF02384860 |
[6] | Bougerol, Philippe; Lacroix, Jean, Products of random matrices with applications to Schr\`“odinger operators, Progress in Probability and Statistics 8, xii+283 pp. (1985), Birkh\'”auser Boston, Inc., Boston, MA ·Zbl 0572.60001 ·doi:10.1007/978-1-4684-9172-2 |
[7] | Benoist, Yves; Quint, Jean-Fran\c{c}ois, Random walks on reductive groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] 62, xi+323 pp. (2016), Springer, Cham ·Zbl 1366.60002 |
[8] | Y. Benoist and J.-F. Quint, On the regularity of stationary measures, preprint (2015). |
[9] | Falconer, Kenneth, Techniques in fractal geometry, xviii+256 pp. (1997), John Wiley & Sons, Ltd., Chichester ·Zbl 0869.28003 |
[10] | Falconer, K. J., The geometry of fractal sets, Cambridge Tracts in Mathematics 85, xiv+162 pp. (1986), Cambridge University Press, Cambridge |
[11] | Falconer, K. J., The Hausdorff dimension of self-affine fractals, Math. Proc. Cambridge Philos. Soc., 103, 2, 339-350 (1988) ·Zbl 0642.28005 ·doi:10.1017/S0305004100064926 |
[12] | Falconer, Kenneth, Dimensions of self-affine sets: a survey. Further developments in fractals and related fields, Trends Math., 115-134 (2013), Birkh\"auser/Springer, New York ·Zbl 1268.28013 ·doi:10.1007/978-0-8176-8400-6\_6 |
[13] | Feng, De-Jun; Hu, Huyi, Dimension theory of iterated function systems, Comm. Pure Appl. Math., 62, 11, 1435-1500 (2009) ·Zbl 1230.37031 ·doi:10.1002/cpa.20276 |
[14] | K. Falconer and T. Kempton, Planar self-affine sets with equal Hausdorff, box and affinity dimensions, arXiv:1503.01270, 2015. ·Zbl 1388.37028 |
[15] | M. Hochman and B. Solomyak, On the dimension of the Furstenberg measure for \(Sl(2,\mathbbR)\)-random matrix products, in preparation. ·Zbl 1398.37012 |
[16] | J\`“arvenp\'”a\"a, Maarit; Mattila, Pertti, Hausdorff and packing dimensions and sections of measures, Mathematika, 45, 1, 55-77 (1998) ·Zbl 0905.28002 ·doi:10.1112/S0025579300014042 |
[17] | Jordan, Thomas; Pollicott, Mark; Simon, K\'aroly, Hausdorff dimension for randomly perturbed self affine attractors, Comm. Math. Phys., 270, 2, 519-544 (2007) ·Zbl 1119.28004 ·doi:10.1007/s00220-006-0161-7 |
[18] | McMullen, Curt, The Hausdorff dimension of general Sierpi\'nski carpets, Nagoya Math. J., 96, 1-9 (1984) ·Zbl 0539.28003 |
[19] | P. Mattila, Fourier analysis and Hausdorff dimension, Cambridge University Press, Cambridge, 2015. ·Zbl 1332.28001 |
[20] | Mattila, Pertti, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics 44, xii+343 pp. (1995), Cambridge University Press, Cambridge ·Zbl 0819.28004 ·doi:10.1017/CBO9780511623813 |
[21] | Parry, William, Topics in ergodic theory, Cambridge Tracts in Mathematics 75, x+110 pp. (1981), Cambridge University Press, Cambridge-New York ·Zbl 1096.37001 |
[22] | Solomyak, Boris, Measure and dimension for some fractal families, Math. Proc. Cambridge Philos. Soc., 124, 3, 531-546 (1998) ·Zbl 0927.28006 ·doi:10.1017/S0305004198002680 |