Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Parameter-robust discretization and preconditioning of Biot’s consolidation model.(English)Zbl 1381.76183

Summary: Biot’s consolidation model in poroelasticity has a number of applications in science, medicine, and engineering. The model depends on various parameters, and in practical applications these parameters range over several orders of magnitude. A current challenge is to design discretization techniques and solution algorithms that are well-behaved with respect to these variations. The purpose of this paper is to study finite element discretizations of this model and construct block diagonal preconditioners for the discrete Biot systems. The approach taken here is to consider the stability of the problem in nonstandard or weighted Hilbert spaces and employ the operator preconditioning approach. We derive preconditioners that are robust with respect to both the variations of the parameters and the mesh refinement. The parameters of interest are small time-step sizes, large bulk and shear moduli, and small hydraulic conductivity.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65F08 Preconditioners for iterative methods
65F10 Iterative numerical methods for linear systems
65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76S05 Flows in porous media; filtration; seepage

Software:

FEniCS

Cite

References:

[1]A. Anandarajah, {\it Computational Methods in Elasticity and Plasticity: Solids and Porous Media}, Springer, New York, 2010. ·Zbl 1211.74001
[2]O. Axelsson, R. Blaheta, and P. Byczanski, {\it Stable discretization of poroelasticity problems and efficient preconditioners for arising saddle point type matrices}, Comput. Vis. Sci., 15 (2012), pp. 191-207. ·Zbl 1388.74035
[3]O. Axelsson and G. Lindskog, {\it On the rate of convergence of the preconditioned conjugate gradient method}, Numer. Math., 48 (1986), pp. 499-523. ·Zbl 0564.65017
[4]I. Babuška and M. Suri, {\it Locking effects in the finite element approximation of elasticity problems}, Numer. Math., 62 (1992), pp. 439-463. ·Zbl 0762.65057
[5]F. Ben-Hatira, K. Saidane, and A. Mrabet, {\it A finite element modeling of the human lumbar unit including the spinal cord}, J. Biomed. Sci. Eng., 5 (2012), pp. 146-152.
[6]D. Boffi, F. Brezzi, and M. Fortin, {\it Finite elements for the Stokes problem}, in Mixed Finite Elements: Compatibility Conditions, D. Boffi and L. Gastaldi, eds., Lecture Notes in Math. 1939, Springer, Berlin, 2008, pp. 45-100. ·Zbl 1182.76895
[7]S. C. Brenner and L.-Y. Sung, {\it Linear finite element methods for planar linear elasticity}, Math. Comp., 59 (1992), pp. 321-338. ·Zbl 0766.73060
[8]F. Brezzi and M. Fortin, {\it Mixed and Hybrid Finite Element Methods}, Springer Ser. Comput. Math. 15, Springer, New York, 1991. ·Zbl 0788.73002
[9]S.-H. Chan, K.-K. Phoon, and F. H. Lee, {\it A modified Jacobi preconditioner for solving ill-conditioned Biot’s consolidation equations using symmetric quasi-minimal residual method}, Internat. J. Numer. Anal. Methods Geomech., 25 (2001), pp. 1001-1025. ·Zbl 1065.74605
[10]Y. Chen, Y. Luo, and M. Feng, {\it Analysis of a discontinuous Galerkin method for the Biot’s consolidation problem}, Appl. Math. Comput., 219 (2013), pp. 9043-9056. ·Zbl 1290.74038
[11]O. Coussy, {\it Poromechanics}, Wiley, Chichester, England, 2004.
[12]M. Crouzeix and P.-A. Raviart, {\it Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I}, ESAIM Math. Model. Numer. Anal., 7 (1973), pp. 33-75. ·Zbl 0302.65087
[13]R. D. Falgout and U. M. Yang, {\it Computational Science–ICCS 2002: International Conference Amsterdam, The Netherlands, 2002 Proceedings, Part} III, Springer, Berlin, 2002, pp. 632-641, ·Zbl 1056.65046
[14]V. Girault and P.-A. Raviart, {\it Finite element methods for Navier-Stokes equations}, Springer Ser. Comput. Math. 5, Springer, Berlin, 1986. ·Zbl 0413.65081
[15]J. B. Haga, H. Osnes, and H. P. Langtangen, {\it A parallel block preconditioner for large-scale poroelasticity with highly heterogeneous material parameters}, Comput. Geosci., 16 (2012), pp. 723-734.
[16]J. Korsawe and G. Starke, {\it A least-squares mixed finite element method for Biot’s consolidation problem in porous media}, SIAM J. Numer. Anal., 43 (2005), pp. 318-339. ·Zbl 1086.76041
[17]A. Logg, K.-A. Mardal, and G. N. Wells, eds., {\it Automated solution of differential equations by the finite element method}, Lect. Notes Comput. Sci. Eng. 84, Springer, Heidelberg, 2012. ·Zbl 1247.65105
[18]D. S. Malkus and T. J. Hughes, {\it Mixed finite element methods — reduced and selective integration techniques: A unification of concepts}, Comput. Methods Appl. Mech. Engrg., 15 (1978), pp. 63 – 81. ·Zbl 0381.73075
[19]K.-A. Mardal and J. B. Haga, {\it Block preconditioning of systems of PDEs}, in Automated Solution of Differential Equations by the Finite Element Method, Springer, Berlin, 2012, pp. 643-655. ·Zbl 1247.65105
[20]K. A. Mardal, X.-C. Tai, and R. Winther, {\it A robust finite element method for Darcy-Stokes flow}, SIAM J. Numer. Anal., 40 (2002), pp. 1605-1631. ·Zbl 1037.65120
[21]K.-A. Mardal and R. Winther, {\it Preconditioning discretizations of systems of partial differential equations}, Numer. Linear Algebra Appl., 18 (2011), pp. 1-40. ·Zbl 1249.65246
[22]M. A. Murad and A. F. D. Loula, {\it Improved accuracy in finite element analysis of Biot’s consolidation problem}, Comput. Methods Appl. Mech. Engrg., 95 (1992), pp. 359-382. ·Zbl 0760.73068
[23]M. A. Murad and A. F. D. Loula, {\it On stability and convergence of finite element approximations of Biot’s consolidation problem}, Internat. J. Numer. Methods Engrg., 37 (1994), pp. 645-667. ·Zbl 0791.76047
[24]M. A. Murad, V. Thomée, and A. F. D. Loula, {\it Asymptotic behavior of semidiscrete finite-element approximations of Biot’s consolidation problem}, SIAM J. Numer. Anal., 33 (1996), pp. 1065-1083. ·Zbl 0854.76053
[25]B. F. Nielsen and K.-A. Mardal, {\it Analysis of the minimal residual method applied to ill posed optimality systems}, SIAM J. Sci. Comput., 35 (2013), pp. A785-A814. ·Zbl 1266.49038
[26]P. J. Phillips and M. F. Wheeler, {\it A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. I. The continuous in time case}, Comput. Geosci., 11 (2007), pp. 131-144. ·Zbl 1117.74015
[27]P. J. Phillips and M. F. Wheeler, {\it A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. II. The discrete-in-time case}, Comput. Geosci., 11 (2007), pp. 145-158. ·Zbl 1117.74016
[28]P. J. Phillips and M. F. Wheeler, {\it A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity}, Comput. Geosci., 12 (2008), pp. 417-435. ·Zbl 1155.74048
[29]K. K. Phoon, K. C. Toh, S. H. Chan, and F. H. Lee, {\it An efficient diagonal preconditioner for finite element solution of Biot’s consolidation equations}, Internat. J. Numer. Methods Engrg., 55 (2002), pp. 377-400. ·Zbl 1076.74558
[30]M. B. Reed, {\it An investigation of numerical errors in the analysis of consolidation by finite elements}, Internat. J. Numer. Anal. Methods Geomech., 8 (1984), pp. 243-257. ·Zbl 0536.73089
[31]S. Rhebergen, G. N. Wells, R. F. Katz, and A. J. Wathen, {\it Analysis of block preconditioners for models of coupled magma/mantle dynamics}, SIAM J. Sci. Comput., 36 (2014), pp. A1960-A1977. ·Zbl 1299.86001
[32]S. Rhebergen, G. N. Wells, A. J. Wathen, and R. F. Katz, {\it Three-field block preconditioners for models of coupled magma/mantle dynamics}, SIAM J. Sci. Comput., 37 (2015), pp. A2270-A2294. ·Zbl 1327.65055
[33]R. E. Showalter, {\it Diffusion in poro-elastic media}, J. Math. Anal. Appl., 251 (2000), pp. 310-340. ·Zbl 0979.74018
[34]J. H. Smith and J. A. Humphrey, {\it Interstitial transport and transvascular fluid exchange during infusion into brain and tumor tissue}, Microvasc. Res., 73 (2007), pp. 58-73.
[35]K. Støverud, M. Aln\aes, H. P. Langtangen, V. Haughton, and K.-A. Mardal, {\it Poroelastic modeling of syringomyelia – a systematic study of the effects of pia mater, central canal, median fissure, white and grey matter on pressure wave propagation and fluid movement within the cervical spinal cord}, Comput. Methods Biomech. Biomed. Eng., 19 (2016), pp. 686-698.
[36]P. A. Vermeer and A. Verruijt, {\it An accuracy condition for consolidation by finite elements}, Internat. J. Numer. Anal. Methods Geomech., 5 (1981), pp. 1-14. ·Zbl 0456.73060
[37]H. F. Wang, {\it Theory of Linear Poroelasticity}, Princeton Ser. Geophys., Princeton University Press, Princeton, NJ, 2000.
[38]A. J. Wathen, {\it Realistic eigenvalue bounds for the Galerkin mass matrix}, IMA J. Numer. Anal., 7 (1987), pp. 449-457. ·Zbl 0648.65076
[39]S.-Y. Yi, {\it A coupling of nonconforming and mixed finite element methods for Biot’s consolidation model}, Numer. Methods Partial Differential Equations, 29 (2013), pp. 1749-1777. ·Zbl 1274.74455
[40]O. C. Zienkiewicz and T. Shiomi, {\it Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution}, Internat. J. Numer. Anal. Methods Geomech., 8 (1984), pp. 71-96. ·Zbl 0526.73099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp