[1] | T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, Modified Gravity and Cosmology, Phys. Rept.513 (2012) 1 [arXiv:1106.2476] [INSPIRE]. ·doi:10.1016/j.physrep.2012.01.001 |
[2] | C. Charmousis, From Lovelock to Horndeski’s Generalized Scalar Tensor Theory, Lect. Notes Phys.892 (2015) 25 [arXiv:1405.1612] [INSPIRE]. ·doi:10.1007/978-3-319-10070-8_2 |
[3] | T.P. Sotiriou, Gravity and Scalar Fields, Lect. Notes Phys.892 (2015) 3 [arXiv:1404.2955] [INSPIRE]. ·doi:10.1007/978-3-319-10070-8_1 |
[4] | E. Babichev and C. Deffayet, An introduction to the Vainshtein mechanism, Class. Quant. Grav.30 (2013) 184001 [arXiv:1304.7240] [INSPIRE]. ·Zbl 1277.83002 ·doi:10.1088/0264-9381/30/18/184001 |
[5] | A. Kandus, K.E. Kunze and C.G. Tsagas, Primordial magnetogenesis, Phys. Rept.505 (2011) 1 [arXiv:1007.3891] [INSPIRE]. ·doi:10.1016/j.physrep.2011.03.001 |
[6] | Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XXIII. Isotropy and statistics of the CMB, Astron. Astrophys.571 (2014) A23 [arXiv:1303.5083] [INSPIRE]. ·Zbl 1346.83035 |
[7] | C.M. Will and K.L. Nordtvedt Jr., Conservation Laws and Preferred Frames in Relativistic Gravity. I. Preferred-Frame Theories and an Extended PPN Formalism, Astrophys. J.177 (1972) 757 [INSPIRE]. ·Zbl 1269.81147 |
[8] | K.L. Nordtvedt Jr. and C.M. Will, Conservation Laws and Preferred Frames in Relativistic Gravity. II. Experimental Evidence to Rule Out Preferred-Frame Theories of Gravity, Astrophys. J.177 (1972) 775 [INSPIRE]. |
[9] | R.W. Hellings and K.L. Nordtvedt Jr., Vector-Metric Theory of Gravity, Phys. Rev.D 7 (1973) 3593 [INSPIRE]. ·Zbl 0272.92016 |
[10] | T. Jacobson, Einstein-æther gravity: A Status report, PoS (QG-PH) 020 [arXiv:0801.1547] [INSPIRE]. |
[11] | G.W. Horndeski and J. Wainwright, Energy Momentum Tensor of the Electromagnetic Field, Phys. Rev.D 16 (1977) 1691 [INSPIRE]. |
[12] | G.W. Horndeski, Conservation of Charge and the Einstein-Maxwell Field Equations, J. Math. Phys.17 (1976) 1980 [INSPIRE]. ·doi:10.1063/1.522837 |
[13] | G.W. Horndeski, Null Electromagnetic Fields In The Generalized Einstein-maxwell Field Theory, J. Math. Phys.20 (1979) 726 [INSPIRE]. ·doi:10.1063/1.524115 |
[14] | G.W. Horndeski, Characteristic Surfaces And Characteristic Initial Data For The Generalized Einstein-Maxwell Field Equations, J. Math. Phys.20 (1979) 1745 [INSPIRE]. ·doi:10.1063/1.524260 |
[15] | J.-P. Uzan, The Fundamental constants and their variation: Observational status and theoretical motivations, Rev. Mod. Phys.75 (2003) 403 [hep-ph/0205340] [INSPIRE]. ·Zbl 1205.81142 |
[16] | J.D. Barrow, H.B. Sandvik and J. Magueijo, The behavior of varying-alpha cosmologies, Phys. Rev.D 65 (2002) 063504 [astro-ph/0109414] [INSPIRE]. ·Zbl 0997.83106 |
[17] | G.W. Horndeski, Birkhoff ’s Theorem and Magnetic Monopole Solutions for a System of Generalized Einstein-Maxwell Field Equations, J. Math. Phys.19 (1978) 668 [INSPIRE]. ·doi:10.1063/1.523710 |
[18] | G.W. Horndeski, Static Spherically Symmetric Solutions to a System of Generalized Einstein-Maxwell Field Equations, Phys. Rev.D 17 (1978) 391 [INSPIRE]. |
[19] | C. Charmousis, E.J. Copeland, A. Padilla and P.M. Saffin, Self-tuning and the derivation of a class of scalar-tensor theories, Phys. Rev.D 85 (2012) 104040 [arXiv:1112.4866] [INSPIRE]. |
[20] | C. Charmousis, E.J. Copeland, A. Padilla and P.M. Saffin, General second order scalar-tensor theory, self tuning and the Fab Four, Phys. Rev. Lett.108 (2012) 051101 [arXiv:1106.2000] [INSPIRE]. ·doi:10.1103/PhysRevLett.108.051101 |
[21] | J.D. Barrow, M. Thorsrud and K. Yamamoto, Cosmologies in Horndeski’s second-order vector-tensor theory, JHEP02 (2013) 146 [arXiv:1211.5403] [INSPIRE]. ·Zbl 1342.83519 ·doi:10.1007/JHEP02(2013)146 |
[22] | G. Esposito-Farese, C. Pitrou and J.-P. Uzan, Vector theories in cosmology, Phys. Rev.D 81 (2010) 063519 [arXiv:0912.0481] [INSPIRE]. |
[23] | J. Beltran Jimenez, R. Durrer, L. Heisenberg and M. Thorsrud, Stability of Horndeski vector-tensor interactions, JCAP10 (2013) 064 [arXiv:1308.1867] [INSPIRE]. ·doi:10.1088/1475-7516/2013/10/064 |
[24] | H.A. Buchdahl, On A Lagrangian For Nonminimally Coupled Gravitational And Electromagnetic Fields, J. Phys.A 12 (1979) 1037 [INSPIRE]. |
[25] | F. Mueller-Hoissen, Gravity Actions, Boundary Terms and Second Order Field Equations, Nucl. Phys.B 337 (1990) 709 [INSPIRE]. ·doi:10.1016/0550-3213(90)90513-D |
[26] | F. Mueller-Hoissen, Higher derivative versus second order field equations, Annalen Phys.48 (1991) 543 [INSPIRE]. ·doi:10.1002/andp.19915030806 |
[27] | C. Charmousis, Higher order gravity theories and their black hole solutions, Lect. Notes Phys.769 (2009) 299 [arXiv:0805.0568] [INSPIRE]. ·Zbl 1163.83301 ·doi:10.1007/978-3-540-88460-6_8 |
[28] | C. Charmousis, B. Gouteraux and E. Kiritsis, Higher-derivative scalar-vector-tensor theories: black holes, Galileons, singularity cloaking and holography, JHEP09 (2012) 011 [arXiv:1206.1499] [INSPIRE]. ·doi:10.1007/JHEP09(2012)011 |
[29] | A.D. Dolgov and Y.B. Zeldovich, Cosmology and Elementary Particles, Rev. Mod. Phys.53 (1981) 1 [INSPIRE]. ·doi:10.1103/RevModPhys.53.1 |
[30] | E. Allys, P. Peter and Y. Rodriguez, Generalized Proca action for an Abelian vector field, JCAP02 (2016) 004 [arXiv:1511.03101] [INSPIRE]. ·doi:10.1088/1475-7516/2016/02/004 |
[31] | L. Heisenberg, Generalization of the Proca Action, JCAP05 (2014) 015 [arXiv:1402.7026] [INSPIRE]. ·doi:10.1088/1475-7516/2014/05/015 |
[32] | G. Tasinato, Cosmic Acceleration from Abelian Symmetry Breaking, JHEP04 (2014) 067 [arXiv:1402.6450] [INSPIRE]. ·Zbl 1333.83281 ·doi:10.1007/JHEP04(2014)067 |
[33] | C. Deffayet, S. Deser and G. Esposito-Farese, Arbitrary p-form Galileons, Phys. Rev.D 82 (2010) 061501 [arXiv:1007.5278] [INSPIRE]. |
[34] | P. Fleury, J.P. Beltran Almeida, C. Pitrou and J.-P. Uzan, On the stability and causality of scalar-vector theories, JCAP11 (2014) 043 [arXiv:1406.6254] [INSPIRE]. ·doi:10.1088/1475-7516/2014/11/043 |
[35] | C. Deffayet, A.E. Gümrükçüoğlu, S. Mukohyama and Y. Wang, A no-go theorem for generalized vector Galileons on flat spacetime, JHEP04 (2014) 082 [arXiv:1312.6690] [INSPIRE]. ·doi:10.1007/JHEP04(2014)082 |
[36] | E. Babichev and C. Charmousis, Dressing a black hole with a time-dependent Galileon, JHEP08 (2014) 106 [arXiv:1312.3204] [INSPIRE]. ·doi:10.1007/JHEP08(2014)106 |
[37] | E. Babichev, C. Charmousis and M. Hassaine, Charged Galileon black holes, JCAP05 (2015) 031 [arXiv:1503.02545] [INSPIRE]. ·doi:10.1088/1475-7516/2015/05/031 |
[38] | J.D. Bekenstein, Nonexistence of baryon number for static black holes, Phys. Rev.D 5 (1972) 1239 [INSPIRE]. |
[39] | J.D. Bekenstein, Nonexistence of baryon number for black holes. II, Phys. Rev.D 5 (1972) 2403 [INSPIRE]. |
[40] | J.D. Bekenstein, Transcendence of the law of baryon-number conservation in black hole physics, Phys. Rev. Lett.28 (1972) 452 [INSPIRE]. ·doi:10.1103/PhysRevLett.28.452 |
[41] | J. Chagoya, G. Niz and G. Tasinato, Black Holes and Abelian Symmetry Breaking, Class. Quant. Grav.33 (2016) 175007 [arXiv:1602.08697] [INSPIRE]. ·Zbl 1349.83040 ·doi:10.1088/0264-9381/33/17/175007 |
[42] | C. Herdeiro, E. Radu and H. Runarsson, Kerr black holes with Proca hair, Class. Quant. Grav.33 (2016) 154001 [arXiv:1603.02687] [INSPIRE]. ·Zbl 1344.83032 ·doi:10.1088/0264-9381/33/15/154001 |
[43] | M. Minamitsuji, Solutions in the generalized Proca theory with the nonminimal coupling to the Einstein tensor, Phys. Rev.D 94 (2016) 084039 [arXiv:1607.06278] [INSPIRE]. |
[44] | A. Cisterna, L. Guajardo, M. Hassaine and J. Oliva, Quintic quasi-topological gravity, JHEP04 (2017) 066 [arXiv:1702.04676] [INSPIRE]. ·Zbl 1378.83058 ·doi:10.1007/JHEP04(2017)066 |
[45] | R. Brito, V. Cardoso, C.A.R. Herdeiro and E. Radu, Proca stars: Gravitating Bose-Einstein condensates of massive spin 1 particles, Phys. Lett.B 752 (2016) 291 [arXiv:1508.05395] [INSPIRE]. ·doi:10.1016/j.physletb.2015.11.051 |
[46] | M. Rinaldi, Black holes with non-minimal derivative coupling, Phys. Rev.D 86 (2012) 084048 [arXiv:1208.0103] [INSPIRE]. |
[47] | C. Charmousis and D. Iosifidis, Self tuning scalar tensor black holes, J. Phys. Conf. Ser.600 (2015) 012003 [arXiv:1501.05167] [INSPIRE]. ·doi:10.1088/1742-6596/600/1/012003 |
[48] | A. Anabalon, A. Cisterna and J. Oliva, Asymptotically locally AdS and flat black holes in Horndeski theory, Phys. Rev.D 89 (2014) 084050 [arXiv:1312.3597] [INSPIRE]. |
[49] | M. Minamitsuji, Solutions in the scalar-tensor theory with nonminimal derivative coupling, Phys. Rev.D 89 (2014) 064017 [arXiv:1312.3759] [INSPIRE]. |
[50] | M. Bravo-Gaete and M. Hassaine, Lifshitz black holes with a time-dependent scalar field in a Horndeski theory, Phys. Rev.D 89 (2014) 104028 [arXiv:1312.7736] [INSPIRE]. |
[51] | W.-J. Geng and H. Lü, Einstein-Vector Gravity, Emerging Gauge Symmetry and de Sitter Bounce, Phys. Rev.D 93 (2016) 044035 [arXiv:1511.03681] [INSPIRE]. |
[52] | Z.-Y. Fan, Black holes with vector hair, JHEP09 (2016) 039 [arXiv:1606.00684] [INSPIRE]. ·Zbl 1390.83196 ·doi:10.1007/JHEP09(2016)039 |
[53] | M. Barriola and A. Vilenkin, Gravitational Field of a Global Monopole, Phys. Rev. Lett.63 (1989) 341 [INSPIRE]. ·doi:10.1103/PhysRevLett.63.341 |
[54] | E. Babichev, C. Charmousis and A. Lehébel, Black holes and stars in Horndeski theory, Class. Quant. Grav.33 (2016) 154002 [arXiv:1604.06402] [INSPIRE]. ·Zbl 1346.83035 ·doi:10.1088/0264-9381/33/15/154002 |
[55] | M. Cvetič, G.W. Gibbons and Z.H. Saleem, Thermodynamics of Asymptotically Conical Geometries, Phys. Rev. Lett.114 (2015) 231301 [arXiv:1412.5996] [INSPIRE]. ·doi:10.1103/PhysRevLett.114.231301 |
[56] | H.-S. Liu, H. Lü and C.N. Pope, Thermodynamics of Einstein-Proca AdS Black Holes, JHEP06 (2014) 109 [arXiv:1402.5153] [INSPIRE]. ·Zbl 1333.83100 ·doi:10.1007/JHEP06(2014)109 |
[57] | M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE]. |
[58] | D.-W. Pang, On Charged Lifshitz Black Holes, JHEP01 (2010) 116 [arXiv:0911.2777] [INSPIRE]. ·Zbl 1269.81147 ·doi:10.1007/JHEP01(2010)116 |
[59] | A. Alvarez, E. Ayón-Beato, H.A. González and M. Hassaine, Nonlinearly charged Lifshitz black holes for any exponent z > 1, JHEP06 (2014) 041 [arXiv:1403.5985] [INSPIRE]. ·doi:10.1007/JHEP06(2014)041 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.