Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Black holes and solitons in an extended Proca theory.(English)Zbl 1380.83117

Summary: We study a massive vector tensor theory that acquires mass via a standard Proca term but also via a higher order term containing an explicit coupling to curvature. We find static solutions that are asymptotically flat, AdS or Lifshitz black holes. Since the higher order term regularizes the effect of the Proca mass term, generically solutions are asymptotically regular for arbitrary couplings. This is true in particular for asymptotically flat black holes. For a particular coupling we find particle like solitons that have a regular and non trivial geometry everywhere. In all adS solutions the Proca mass term plays the role of an effective cosmological constant distinctly different from the bare cosmological constant.

MSC:

83C57 Black holes
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
35Q51 Soliton equations
83C15 Exact solutions to problems in general relativity and gravitational theory

Cite

References:

[1]T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, Modified Gravity and Cosmology, Phys. Rept.513 (2012) 1 [arXiv:1106.2476] [INSPIRE]. ·doi:10.1016/j.physrep.2012.01.001
[2]C. Charmousis, From Lovelock to Horndeski’s Generalized Scalar Tensor Theory, Lect. Notes Phys.892 (2015) 25 [arXiv:1405.1612] [INSPIRE]. ·doi:10.1007/978-3-319-10070-8_2
[3]T.P. Sotiriou, Gravity and Scalar Fields, Lect. Notes Phys.892 (2015) 3 [arXiv:1404.2955] [INSPIRE]. ·doi:10.1007/978-3-319-10070-8_1
[4]E. Babichev and C. Deffayet, An introduction to the Vainshtein mechanism, Class. Quant. Grav.30 (2013) 184001 [arXiv:1304.7240] [INSPIRE]. ·Zbl 1277.83002 ·doi:10.1088/0264-9381/30/18/184001
[5]A. Kandus, K.E. Kunze and C.G. Tsagas, Primordial magnetogenesis, Phys. Rept.505 (2011) 1 [arXiv:1007.3891] [INSPIRE]. ·doi:10.1016/j.physrep.2011.03.001
[6]Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XXIII. Isotropy and statistics of the CMB, Astron. Astrophys.571 (2014) A23 [arXiv:1303.5083] [INSPIRE]. ·Zbl 1346.83035
[7]C.M. Will and K.L. Nordtvedt Jr., Conservation Laws and Preferred Frames in Relativistic Gravity. I. Preferred-Frame Theories and an Extended PPN Formalism, Astrophys. J.177 (1972) 757 [INSPIRE]. ·Zbl 1269.81147
[8]K.L. Nordtvedt Jr. and C.M. Will, Conservation Laws and Preferred Frames in Relativistic Gravity. II. Experimental Evidence to Rule Out Preferred-Frame Theories of Gravity, Astrophys. J.177 (1972) 775 [INSPIRE].
[9]R.W. Hellings and K.L. Nordtvedt Jr., Vector-Metric Theory of Gravity, Phys. Rev.D 7 (1973) 3593 [INSPIRE]. ·Zbl 0272.92016
[10]T. Jacobson, Einstein-æther gravity: A Status report, PoS (QG-PH) 020 [arXiv:0801.1547] [INSPIRE].
[11]G.W. Horndeski and J. Wainwright, Energy Momentum Tensor of the Electromagnetic Field, Phys. Rev.D 16 (1977) 1691 [INSPIRE].
[12]G.W. Horndeski, Conservation of Charge and the Einstein-Maxwell Field Equations, J. Math. Phys.17 (1976) 1980 [INSPIRE]. ·doi:10.1063/1.522837
[13]G.W. Horndeski, Null Electromagnetic Fields In The Generalized Einstein-maxwell Field Theory, J. Math. Phys.20 (1979) 726 [INSPIRE]. ·doi:10.1063/1.524115
[14]G.W. Horndeski, Characteristic Surfaces And Characteristic Initial Data For The Generalized Einstein-Maxwell Field Equations, J. Math. Phys.20 (1979) 1745 [INSPIRE]. ·doi:10.1063/1.524260
[15]J.-P. Uzan, The Fundamental constants and their variation: Observational status and theoretical motivations, Rev. Mod. Phys.75 (2003) 403 [hep-ph/0205340] [INSPIRE]. ·Zbl 1205.81142
[16]J.D. Barrow, H.B. Sandvik and J. Magueijo, The behavior of varying-alpha cosmologies, Phys. Rev.D 65 (2002) 063504 [astro-ph/0109414] [INSPIRE]. ·Zbl 0997.83106
[17]G.W. Horndeski, Birkhoff ’s Theorem and Magnetic Monopole Solutions for a System of Generalized Einstein-Maxwell Field Equations, J. Math. Phys.19 (1978) 668 [INSPIRE]. ·doi:10.1063/1.523710
[18]G.W. Horndeski, Static Spherically Symmetric Solutions to a System of Generalized Einstein-Maxwell Field Equations, Phys. Rev.D 17 (1978) 391 [INSPIRE].
[19]C. Charmousis, E.J. Copeland, A. Padilla and P.M. Saffin, Self-tuning and the derivation of a class of scalar-tensor theories, Phys. Rev.D 85 (2012) 104040 [arXiv:1112.4866] [INSPIRE].
[20]C. Charmousis, E.J. Copeland, A. Padilla and P.M. Saffin, General second order scalar-tensor theory, self tuning and the Fab Four, Phys. Rev. Lett.108 (2012) 051101 [arXiv:1106.2000] [INSPIRE]. ·doi:10.1103/PhysRevLett.108.051101
[21]J.D. Barrow, M. Thorsrud and K. Yamamoto, Cosmologies in Horndeski’s second-order vector-tensor theory, JHEP02 (2013) 146 [arXiv:1211.5403] [INSPIRE]. ·Zbl 1342.83519 ·doi:10.1007/JHEP02(2013)146
[22]G. Esposito-Farese, C. Pitrou and J.-P. Uzan, Vector theories in cosmology, Phys. Rev.D 81 (2010) 063519 [arXiv:0912.0481] [INSPIRE].
[23]J. Beltran Jimenez, R. Durrer, L. Heisenberg and M. Thorsrud, Stability of Horndeski vector-tensor interactions, JCAP10 (2013) 064 [arXiv:1308.1867] [INSPIRE]. ·doi:10.1088/1475-7516/2013/10/064
[24]H.A. Buchdahl, On A Lagrangian For Nonminimally Coupled Gravitational And Electromagnetic Fields, J. Phys.A 12 (1979) 1037 [INSPIRE].
[25]F. Mueller-Hoissen, Gravity Actions, Boundary Terms and Second Order Field Equations, Nucl. Phys.B 337 (1990) 709 [INSPIRE]. ·doi:10.1016/0550-3213(90)90513-D
[26]F. Mueller-Hoissen, Higher derivative versus second order field equations, Annalen Phys.48 (1991) 543 [INSPIRE]. ·doi:10.1002/andp.19915030806
[27]C. Charmousis, Higher order gravity theories and their black hole solutions, Lect. Notes Phys.769 (2009) 299 [arXiv:0805.0568] [INSPIRE]. ·Zbl 1163.83301 ·doi:10.1007/978-3-540-88460-6_8
[28]C. Charmousis, B. Gouteraux and E. Kiritsis, Higher-derivative scalar-vector-tensor theories: black holes, Galileons, singularity cloaking and holography, JHEP09 (2012) 011 [arXiv:1206.1499] [INSPIRE]. ·doi:10.1007/JHEP09(2012)011
[29]A.D. Dolgov and Y.B. Zeldovich, Cosmology and Elementary Particles, Rev. Mod. Phys.53 (1981) 1 [INSPIRE]. ·doi:10.1103/RevModPhys.53.1
[30]E. Allys, P. Peter and Y. Rodriguez, Generalized Proca action for an Abelian vector field, JCAP02 (2016) 004 [arXiv:1511.03101] [INSPIRE]. ·doi:10.1088/1475-7516/2016/02/004
[31]L. Heisenberg, Generalization of the Proca Action, JCAP05 (2014) 015 [arXiv:1402.7026] [INSPIRE]. ·doi:10.1088/1475-7516/2014/05/015
[32]G. Tasinato, Cosmic Acceleration from Abelian Symmetry Breaking, JHEP04 (2014) 067 [arXiv:1402.6450] [INSPIRE]. ·Zbl 1333.83281 ·doi:10.1007/JHEP04(2014)067
[33]C. Deffayet, S. Deser and G. Esposito-Farese, Arbitrary p-form Galileons, Phys. Rev.D 82 (2010) 061501 [arXiv:1007.5278] [INSPIRE].
[34]P. Fleury, J.P. Beltran Almeida, C. Pitrou and J.-P. Uzan, On the stability and causality of scalar-vector theories, JCAP11 (2014) 043 [arXiv:1406.6254] [INSPIRE]. ·doi:10.1088/1475-7516/2014/11/043
[35]C. Deffayet, A.E. Gümrükçüoğlu, S. Mukohyama and Y. Wang, A no-go theorem for generalized vector Galileons on flat spacetime, JHEP04 (2014) 082 [arXiv:1312.6690] [INSPIRE]. ·doi:10.1007/JHEP04(2014)082
[36]E. Babichev and C. Charmousis, Dressing a black hole with a time-dependent Galileon, JHEP08 (2014) 106 [arXiv:1312.3204] [INSPIRE]. ·doi:10.1007/JHEP08(2014)106
[37]E. Babichev, C. Charmousis and M. Hassaine, Charged Galileon black holes, JCAP05 (2015) 031 [arXiv:1503.02545] [INSPIRE]. ·doi:10.1088/1475-7516/2015/05/031
[38]J.D. Bekenstein, Nonexistence of baryon number for static black holes, Phys. Rev.D 5 (1972) 1239 [INSPIRE].
[39]J.D. Bekenstein, Nonexistence of baryon number for black holes. II, Phys. Rev.D 5 (1972) 2403 [INSPIRE].
[40]J.D. Bekenstein, Transcendence of the law of baryon-number conservation in black hole physics, Phys. Rev. Lett.28 (1972) 452 [INSPIRE]. ·doi:10.1103/PhysRevLett.28.452
[41]J. Chagoya, G. Niz and G. Tasinato, Black Holes and Abelian Symmetry Breaking, Class. Quant. Grav.33 (2016) 175007 [arXiv:1602.08697] [INSPIRE]. ·Zbl 1349.83040 ·doi:10.1088/0264-9381/33/17/175007
[42]C. Herdeiro, E. Radu and H. Runarsson, Kerr black holes with Proca hair, Class. Quant. Grav.33 (2016) 154001 [arXiv:1603.02687] [INSPIRE]. ·Zbl 1344.83032 ·doi:10.1088/0264-9381/33/15/154001
[43]M. Minamitsuji, Solutions in the generalized Proca theory with the nonminimal coupling to the Einstein tensor, Phys. Rev.D 94 (2016) 084039 [arXiv:1607.06278] [INSPIRE].
[44]A. Cisterna, L. Guajardo, M. Hassaine and J. Oliva, Quintic quasi-topological gravity, JHEP04 (2017) 066 [arXiv:1702.04676] [INSPIRE]. ·Zbl 1378.83058 ·doi:10.1007/JHEP04(2017)066
[45]R. Brito, V. Cardoso, C.A.R. Herdeiro and E. Radu, Proca stars: Gravitating Bose-Einstein condensates of massive spin 1 particles, Phys. Lett.B 752 (2016) 291 [arXiv:1508.05395] [INSPIRE]. ·doi:10.1016/j.physletb.2015.11.051
[46]M. Rinaldi, Black holes with non-minimal derivative coupling, Phys. Rev.D 86 (2012) 084048 [arXiv:1208.0103] [INSPIRE].
[47]C. Charmousis and D. Iosifidis, Self tuning scalar tensor black holes, J. Phys. Conf. Ser.600 (2015) 012003 [arXiv:1501.05167] [INSPIRE]. ·doi:10.1088/1742-6596/600/1/012003
[48]A. Anabalon, A. Cisterna and J. Oliva, Asymptotically locally AdS and flat black holes in Horndeski theory, Phys. Rev.D 89 (2014) 084050 [arXiv:1312.3597] [INSPIRE].
[49]M. Minamitsuji, Solutions in the scalar-tensor theory with nonminimal derivative coupling, Phys. Rev.D 89 (2014) 064017 [arXiv:1312.3759] [INSPIRE].
[50]M. Bravo-Gaete and M. Hassaine, Lifshitz black holes with a time-dependent scalar field in a Horndeski theory, Phys. Rev.D 89 (2014) 104028 [arXiv:1312.7736] [INSPIRE].
[51]W.-J. Geng and H. Lü, Einstein-Vector Gravity, Emerging Gauge Symmetry and de Sitter Bounce, Phys. Rev.D 93 (2016) 044035 [arXiv:1511.03681] [INSPIRE].
[52]Z.-Y. Fan, Black holes with vector hair, JHEP09 (2016) 039 [arXiv:1606.00684] [INSPIRE]. ·Zbl 1390.83196 ·doi:10.1007/JHEP09(2016)039
[53]M. Barriola and A. Vilenkin, Gravitational Field of a Global Monopole, Phys. Rev. Lett.63 (1989) 341 [INSPIRE]. ·doi:10.1103/PhysRevLett.63.341
[54]E. Babichev, C. Charmousis and A. Lehébel, Black holes and stars in Horndeski theory, Class. Quant. Grav.33 (2016) 154002 [arXiv:1604.06402] [INSPIRE]. ·Zbl 1346.83035 ·doi:10.1088/0264-9381/33/15/154002
[55]M. Cvetič, G.W. Gibbons and Z.H. Saleem, Thermodynamics of Asymptotically Conical Geometries, Phys. Rev. Lett.114 (2015) 231301 [arXiv:1412.5996] [INSPIRE]. ·doi:10.1103/PhysRevLett.114.231301
[56]H.-S. Liu, H. Lü and C.N. Pope, Thermodynamics of Einstein-Proca AdS Black Holes, JHEP06 (2014) 109 [arXiv:1402.5153] [INSPIRE]. ·Zbl 1333.83100 ·doi:10.1007/JHEP06(2014)109
[57]M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
[58]D.-W. Pang, On Charged Lifshitz Black Holes, JHEP01 (2010) 116 [arXiv:0911.2777] [INSPIRE]. ·Zbl 1269.81147 ·doi:10.1007/JHEP01(2010)116
[59]A. Alvarez, E. Ayón-Beato, H.A. González and M. Hassaine, Nonlinearly charged Lifshitz black holes for any exponent z > 1, JHEP06 (2014) 041 [arXiv:1403.5985] [INSPIRE]. ·doi:10.1007/JHEP06(2014)041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp