Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On the structure of quantum automorphism groups.(English)Zbl 1376.81041

Summary: We compute the \(K\)-theory of quantum automorphism groups of finite-dimensional \(C^{*}\)-algebras in the sense of Wang. The results show in particular that the reduced \(C^{*}\)-algebras of functions on the quantum permutation groups \(S_{n}^{+}\) are pairwise non-isomorphic for different values of \(n\). Along the way we discuss some general facts regarding torsion in discrete quantum groups. In fact, the duals of quantum automorphism groups are the most basic examples of discrete quantum groups exhibiting genuine quantum torsion phenomena.

MSC:

46L80 \(K\)-theory and operator algebras (including cyclic theory)
19K14 \(K_0\) as an ordered group, traces
58B32 Geometry of quantum groups

Cite

References:

[1][1] S. Baaj and G. Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de C*{C^*}-algèbres, Ann. Sci. Éc. Norm. Supér. (4) 26 (1993), no. 4, 425-488. BaajS.SkandalisG.Unitaires multiplicatifs et dualité pour les produits croisés de C*{C^*}-algèbresAnn. Sci. Éc. Norm. Supér. (4)2619934425488 ·Zbl 0804.46078
[2][2] T. Banica, Fusion rules for representations of compact quantum groups, Expo. Math. 17 (1999), no. 4, 313-337. BanicaT.Fusion rules for representations of compact quantum groupsExpo. Math.1719994313337 ·Zbl 0948.17005
[3][3] T. Banica, Symmetries of a generic coaction, Math. Ann. 314 (1999), no. 4, 763-780. 10.1007/s002080050315BanicaT.Symmetries of a generic coactionMath. Ann.31419994763780 ·Zbl 0928.46038
[4][4] T. Banica, Quantum groups and Fuss-Catalan algebras, Comm. Math. Phys. 226 (2002), no. 1, 221-232. 10.1007/s002200200613BanicaT.Quantum groups and Fuss-Catalan algebrasComm. Math. Phys.22620021221232 ·Zbl 1034.46062
[5][5] T. Banica, Quantum automorphism groups of small metric spaces, Pacific J. Math. 219 (2005), no. 1, 27-51. 10.2140/pjm.2005.219.27BanicaT.Quantum automorphism groups of small metric spacesPacific J. Math.219200512751 ·Zbl 1104.46039
[6][6] T. Banica and J. Bichon, Quantum groups acting on 4 points, J. reine angew. Math. 626 (2009), 75-114. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000263565500003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3BanicaT.BichonJ.Quantum groups acting on 4 pointsJ. reine angew. Math.626200975114 ·Zbl 1187.46058
[7][7] T. Banica, J. Bichon and B. Collins, Quantum permutation groups: A survey, Noncommutative harmonic analysis with applications to probability, Banach Center Publ. 78, Institute of Mathematics of the Polish Academy of Sciences, Warsaw (2007), 13-34. BanicaT.BichonJ.CollinsB.Quantum permutation groups: A surveyNoncommutative harmonic analysis with applications to probabilityBanach Center Publ. 78Institute of Mathematics of the Polish Academy of SciencesWarsaw20071334 ·Zbl 1140.46329
[8][8] R. Banica, S. Curran and R. Speicher, De Finetti theorems for easy quantum groups, Ann. Probab. 40 (2012), no. 1, 401-435. 10.1214/10-AOP619http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000299650700013&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3BanicaR.CurranS.SpeicherR.De Finetti theorems for easy quantum groupsAnn. Probab.4020121401435 ·Zbl 1242.46073
[9][9] T. Banica and R. Speicher, Liberation of orthogonal Lie groups, Adv. Math. 222 (2009), no. 4, 1461-1501. 10.1016/j.aim.2009.06.009http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000273016100009&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3BanicaT.SpeicherR.Liberation of orthogonal Lie groupsAdv. Math.2222009414611501 ·Zbl 1247.46064
[10][10] J. Bichon, A. De Rijdt and S. Vaes, Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys. 262 (2006), no. 3, 703-728. 10.1007/s00220-005-1442-2BichonJ.De RijdtA.VaesS.Ergodic coactions with large multiplicity and monoidal equivalence of quantum groupsComm. Math. Phys.26220063703728 ·Zbl 1122.46046
[11][11] M. Brannan, Reduced operator algebras of trace-perserving quantum automorphism groups, Doc. Math. 18 (2013), 1349-1402. BrannanM.Reduced operator algebras of trace-perserving quantum automorphism groupsDoc. Math.18201313491402 ·Zbl 1294.46063
[12][12] K. De Commer, Galois objects for algebraic quantum groups, J. Algebra 321 (2009), no. 6, 1746-1785. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000263881900011&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1016/j.jalgebra.2008.11.039De CommerK.Galois objects for algebraic quantum groupsJ. Algebra3212009617461785 ·Zbl 1257.16025
[13][13] A. De Rijdt and N. Vander Vennet, Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 1, 169-216. 10.5802/aif.2520De RijdtA.Vander VennetN.Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundariesAnn. Inst. Fourier (Grenoble)6020101169216 ·Zbl 1331.46063
[14][14] J. H. Hong and W. Szymański, Quantum spheres and projective spaces as graph algebras, Comm. Math. Phys. 232 (2002), no. 1, 157-188. 10.1007/s00220-002-0732-1HongJ. H.SzymańskiW.Quantum spheres and projective spaces as graph algebrasComm. Math. Phys.23220021157188 ·Zbl 1015.81029
[15][15] J. Kustermans and S. Vaes, Locally compact quantum groups, Ann. Sci. Éc. Norm. Supér. (4) 33 (2000), no. 6, 837-934. 10.1016/S0012-9593(00)01055-7KustermansJ.VaesS.Locally compact quantum groupsAnn. Sci. Éc. Norm. Supér. (4)3320006837934 ·Zbl 1034.46508
[16][16] R. Meyer, Homological algebra in bivariant \(K\)-theory and other triangulated categories. II, Tbil. Math. J. 1 (2008), 165-210. MeyerR.Homological algebra in bivariant \(K\)-theory and other triangulated categories. IITbil. Math. J.12008165210 ·Zbl 1161.18301
[17][17] R. Meyer and R. Nest, The Baum-Connes conjecture via localisation of categories, Topology 45 (2006), no. 2, 209-259. 10.1016/j.top.2005.07.001MeyerR.NestR.The Baum-Connes conjecture via localisation of categoriesTopology4520062209259 ·Zbl 1092.19004
[18][18] R. Meyer and R. Nest, An analogue of the Baum-Connes isomorphism for coactions of compact groups, Math. Scand. 100 (2007), no. 2, 301-316. 10.7146/math.scand.a-15025MeyerR.NestR.An analogue of the Baum-Connes isomorphism for coactions of compact groupsMath. Scand.10020072301316 ·Zbl 1155.19002
[19][19] R. Meyer and R. Nest, Homological algebra in bivariant \(K\)-theory and other triangulated categories. I, Triangulated categories, London Math. Soc. Lecture Note Ser. 375, Cambridge University Press, Cambridge (2010), 236-289. MeyerR.NestR.Homological algebra in bivariant \(K\)-theory and other triangulated categories. ITriangulated categoriesLondon Math. Soc. Lecture Note Ser. 375Cambridge University PressCambridge2010236289 ·Zbl 1234.18008
[20][20] C. Mrozinski, Quantum automorphism groups and SO⁢(3){SO(3)}-deformations, J. Pure Appl. Algebra 219 (2015), no. 1, 1-32. MrozinskiC.Quantum automorphism groups and SO⁢(3){SO(3)}-deformationsJ. Pure Appl. Algebra21920151132 ·Zbl 1342.17013
[21][21] R. Nest and C. Voigt, Equivariant Poincaré duality for quantum group actions, J. Funct. Anal. 258 (2010), no. 5, 1466-1503. 10.1016/j.jfa.2009.10.015NestR.VoigtC.Equivariant Poincaré duality for quantum group actionsJ. Funct. Anal.2582010514661503 ·Zbl 1191.58003
[22][22] P. Podleś, Quantum spheres, Lett. Math. Phys. 14 (1987), no. 3, 193-202. 10.1007/BF00416848PodleśP.Quantum spheresLett. Math. Phys.1419873193202 ·Zbl 0634.46054
[23][23] P. M. Sołtan, Quantum SO⁢(3){\rmSO(3)} groups and quantum group actions on M2{M_2}, J. Noncommut. Geom. 4 (2010), no. 1, 1-28. SołtanP. M.Quantum SO⁢(3){\rmSO(3)} groups and quantum group actions on M2{M_2}J. Noncommut. Geom.420101128 ·Zbl 1194.46108
[24][24] S. Vaes and R. Vergnioux, The boundary of universal discrete quantum groups, exactness, and factoriality, Duke Math. J. 140 (2007), no. 1, 35-84. 10.1215/S0012-7094-07-14012-2http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000250079200002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3VaesS.VergniouxR.The boundary of universal discrete quantum groups, exactness, and factorialityDuke Math. J.140200713584 ·Zbl 1129.46062
[25][25] A. Van Daele, An algebraic framework for group duality, Adv. Math. 140 (1998), no. 2, 323-366. 10.1006/aima.1998.1775Van DaeleA.An algebraic framework for group dualityAdv. Math.14019982323366 ·Zbl 0933.16043
[26][26] R. Vergnioux, \(K\)-amenability for amalgamated free products of amenable discrete quantum groups, J. Funct. Anal. 212 (2004), no. 1, 206-221. 10.1016/j.jfa.2003.07.017VergniouxR.\(K\)-amenability for amalgamated free products of amenable discrete quantum groupsJ. Funct. Anal.21220041206221 ·Zbl 1064.46064
[27][27] R. Vergnioux and C. Voigt, The \(K\)-theory of free quantum groups, Math. Ann. 357 (2013), no. 1, 355-400. 10.1007/s00208-013-0902-9http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000322723400012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3VergniouxR.VoigtC.The \(K\)-theory of free quantum groupsMath. Ann.35720131355400 ·Zbl 1284.46063
[28][28] C. Voigt, The Baum-Connes conjecture for free orthogonal quantum groups, Adv. Math. 227 (2011), no. 5, 1873-1913. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000291381600006&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1016/j.aim.2011.04.008VoigtC.The Baum-Connes conjecture for free orthogonal quantum groupsAdv. Math.2272011518731913 ·Zbl 1279.19002
[29][29] C. Voigt, Quantum SU⁢(2){SU(2)} and the Baum-Connes conjecture, Operator algebras and quantum groups, Banach Center Publ. 98, Institute of Mathematics of the Polish Academy of Sciences, Warsaw (2012), 417-432. VoigtC.Quantum SU⁢(2){SU(2)} and the Baum-Connes conjectureOperator algebras and quantum groupsBanach Center Publ. 98Institute of Mathematics of the Polish Academy of SciencesWarsaw2012417432 ·Zbl 1328.46065
[30][30] S. Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), no. 1, 195-211. 10.1007/s002200050385WangS.Quantum symmetry groups of finite spacesComm. Math. Phys.19519981195211 ·Zbl 1013.17008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp