[1] | [1] S. Baaj and G. Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de C*{C^*}-algèbres, Ann. Sci. Éc. Norm. Supér. (4) 26 (1993), no. 4, 425-488. BaajS.SkandalisG.Unitaires multiplicatifs et dualité pour les produits croisés de C*{C^*}-algèbresAnn. Sci. Éc. Norm. Supér. (4)2619934425488 ·Zbl 0804.46078 |
[2] | [2] T. Banica, Fusion rules for representations of compact quantum groups, Expo. Math. 17 (1999), no. 4, 313-337. BanicaT.Fusion rules for representations of compact quantum groupsExpo. Math.1719994313337 ·Zbl 0948.17005 |
[3] | [3] T. Banica, Symmetries of a generic coaction, Math. Ann. 314 (1999), no. 4, 763-780. 10.1007/s002080050315BanicaT.Symmetries of a generic coactionMath. Ann.31419994763780 ·Zbl 0928.46038 |
[4] | [4] T. Banica, Quantum groups and Fuss-Catalan algebras, Comm. Math. Phys. 226 (2002), no. 1, 221-232. 10.1007/s002200200613BanicaT.Quantum groups and Fuss-Catalan algebrasComm. Math. Phys.22620021221232 ·Zbl 1034.46062 |
[5] | [5] T. Banica, Quantum automorphism groups of small metric spaces, Pacific J. Math. 219 (2005), no. 1, 27-51. 10.2140/pjm.2005.219.27BanicaT.Quantum automorphism groups of small metric spacesPacific J. Math.219200512751 ·Zbl 1104.46039 |
[6] | [6] T. Banica and J. Bichon, Quantum groups acting on 4 points, J. reine angew. Math. 626 (2009), 75-114. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000263565500003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3BanicaT.BichonJ.Quantum groups acting on 4 pointsJ. reine angew. Math.626200975114 ·Zbl 1187.46058 |
[7] | [7] T. Banica, J. Bichon and B. Collins, Quantum permutation groups: A survey, Noncommutative harmonic analysis with applications to probability, Banach Center Publ. 78, Institute of Mathematics of the Polish Academy of Sciences, Warsaw (2007), 13-34. BanicaT.BichonJ.CollinsB.Quantum permutation groups: A surveyNoncommutative harmonic analysis with applications to probabilityBanach Center Publ. 78Institute of Mathematics of the Polish Academy of SciencesWarsaw20071334 ·Zbl 1140.46329 |
[8] | [8] R. Banica, S. Curran and R. Speicher, De Finetti theorems for easy quantum groups, Ann. Probab. 40 (2012), no. 1, 401-435. 10.1214/10-AOP619http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000299650700013&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3BanicaR.CurranS.SpeicherR.De Finetti theorems for easy quantum groupsAnn. Probab.4020121401435 ·Zbl 1242.46073 |
[9] | [9] T. Banica and R. Speicher, Liberation of orthogonal Lie groups, Adv. Math. 222 (2009), no. 4, 1461-1501. 10.1016/j.aim.2009.06.009http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000273016100009&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3BanicaT.SpeicherR.Liberation of orthogonal Lie groupsAdv. Math.2222009414611501 ·Zbl 1247.46064 |
[10] | [10] J. Bichon, A. De Rijdt and S. Vaes, Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys. 262 (2006), no. 3, 703-728. 10.1007/s00220-005-1442-2BichonJ.De RijdtA.VaesS.Ergodic coactions with large multiplicity and monoidal equivalence of quantum groupsComm. Math. Phys.26220063703728 ·Zbl 1122.46046 |
[11] | [11] M. Brannan, Reduced operator algebras of trace-perserving quantum automorphism groups, Doc. Math. 18 (2013), 1349-1402. BrannanM.Reduced operator algebras of trace-perserving quantum automorphism groupsDoc. Math.18201313491402 ·Zbl 1294.46063 |
[12] | [12] K. De Commer, Galois objects for algebraic quantum groups, J. Algebra 321 (2009), no. 6, 1746-1785. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000263881900011&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1016/j.jalgebra.2008.11.039De CommerK.Galois objects for algebraic quantum groupsJ. Algebra3212009617461785 ·Zbl 1257.16025 |
[13] | [13] A. De Rijdt and N. Vander Vennet, Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 1, 169-216. 10.5802/aif.2520De RijdtA.Vander VennetN.Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundariesAnn. Inst. Fourier (Grenoble)6020101169216 ·Zbl 1331.46063 |
[14] | [14] J. H. Hong and W. Szymański, Quantum spheres and projective spaces as graph algebras, Comm. Math. Phys. 232 (2002), no. 1, 157-188. 10.1007/s00220-002-0732-1HongJ. H.SzymańskiW.Quantum spheres and projective spaces as graph algebrasComm. Math. Phys.23220021157188 ·Zbl 1015.81029 |
[15] | [15] J. Kustermans and S. Vaes, Locally compact quantum groups, Ann. Sci. Éc. Norm. Supér. (4) 33 (2000), no. 6, 837-934. 10.1016/S0012-9593(00)01055-7KustermansJ.VaesS.Locally compact quantum groupsAnn. Sci. Éc. Norm. Supér. (4)3320006837934 ·Zbl 1034.46508 |
[16] | [16] R. Meyer, Homological algebra in bivariant \(K\)-theory and other triangulated categories. II, Tbil. Math. J. 1 (2008), 165-210. MeyerR.Homological algebra in bivariant \(K\)-theory and other triangulated categories. IITbil. Math. J.12008165210 ·Zbl 1161.18301 |
[17] | [17] R. Meyer and R. Nest, The Baum-Connes conjecture via localisation of categories, Topology 45 (2006), no. 2, 209-259. 10.1016/j.top.2005.07.001MeyerR.NestR.The Baum-Connes conjecture via localisation of categoriesTopology4520062209259 ·Zbl 1092.19004 |
[18] | [18] R. Meyer and R. Nest, An analogue of the Baum-Connes isomorphism for coactions of compact groups, Math. Scand. 100 (2007), no. 2, 301-316. 10.7146/math.scand.a-15025MeyerR.NestR.An analogue of the Baum-Connes isomorphism for coactions of compact groupsMath. Scand.10020072301316 ·Zbl 1155.19002 |
[19] | [19] R. Meyer and R. Nest, Homological algebra in bivariant \(K\)-theory and other triangulated categories. I, Triangulated categories, London Math. Soc. Lecture Note Ser. 375, Cambridge University Press, Cambridge (2010), 236-289. MeyerR.NestR.Homological algebra in bivariant \(K\)-theory and other triangulated categories. ITriangulated categoriesLondon Math. Soc. Lecture Note Ser. 375Cambridge University PressCambridge2010236289 ·Zbl 1234.18008 |
[20] | [20] C. Mrozinski, Quantum automorphism groups and SO(3){SO(3)}-deformations, J. Pure Appl. Algebra 219 (2015), no. 1, 1-32. MrozinskiC.Quantum automorphism groups and SO(3){SO(3)}-deformationsJ. Pure Appl. Algebra21920151132 ·Zbl 1342.17013 |
[21] | [21] R. Nest and C. Voigt, Equivariant Poincaré duality for quantum group actions, J. Funct. Anal. 258 (2010), no. 5, 1466-1503. 10.1016/j.jfa.2009.10.015NestR.VoigtC.Equivariant Poincaré duality for quantum group actionsJ. Funct. Anal.2582010514661503 ·Zbl 1191.58003 |
[22] | [22] P. Podleś, Quantum spheres, Lett. Math. Phys. 14 (1987), no. 3, 193-202. 10.1007/BF00416848PodleśP.Quantum spheresLett. Math. Phys.1419873193202 ·Zbl 0634.46054 |
[23] | [23] P. M. Sołtan, Quantum SO(3){\rmSO(3)} groups and quantum group actions on M2{M_2}, J. Noncommut. Geom. 4 (2010), no. 1, 1-28. SołtanP. M.Quantum SO(3){\rmSO(3)} groups and quantum group actions on M2{M_2}J. Noncommut. Geom.420101128 ·Zbl 1194.46108 |
[24] | [24] S. Vaes and R. Vergnioux, The boundary of universal discrete quantum groups, exactness, and factoriality, Duke Math. J. 140 (2007), no. 1, 35-84. 10.1215/S0012-7094-07-14012-2http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000250079200002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3VaesS.VergniouxR.The boundary of universal discrete quantum groups, exactness, and factorialityDuke Math. J.140200713584 ·Zbl 1129.46062 |
[25] | [25] A. Van Daele, An algebraic framework for group duality, Adv. Math. 140 (1998), no. 2, 323-366. 10.1006/aima.1998.1775Van DaeleA.An algebraic framework for group dualityAdv. Math.14019982323366 ·Zbl 0933.16043 |
[26] | [26] R. Vergnioux, \(K\)-amenability for amalgamated free products of amenable discrete quantum groups, J. Funct. Anal. 212 (2004), no. 1, 206-221. 10.1016/j.jfa.2003.07.017VergniouxR.\(K\)-amenability for amalgamated free products of amenable discrete quantum groupsJ. Funct. Anal.21220041206221 ·Zbl 1064.46064 |
[27] | [27] R. Vergnioux and C. Voigt, The \(K\)-theory of free quantum groups, Math. Ann. 357 (2013), no. 1, 355-400. 10.1007/s00208-013-0902-9http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000322723400012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3VergniouxR.VoigtC.The \(K\)-theory of free quantum groupsMath. Ann.35720131355400 ·Zbl 1284.46063 |
[28] | [28] C. Voigt, The Baum-Connes conjecture for free orthogonal quantum groups, Adv. Math. 227 (2011), no. 5, 1873-1913. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000291381600006&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1016/j.aim.2011.04.008VoigtC.The Baum-Connes conjecture for free orthogonal quantum groupsAdv. Math.2272011518731913 ·Zbl 1279.19002 |
[29] | [29] C. Voigt, Quantum SU(2){SU(2)} and the Baum-Connes conjecture, Operator algebras and quantum groups, Banach Center Publ. 98, Institute of Mathematics of the Polish Academy of Sciences, Warsaw (2012), 417-432. VoigtC.Quantum SU(2){SU(2)} and the Baum-Connes conjectureOperator algebras and quantum groupsBanach Center Publ. 98Institute of Mathematics of the Polish Academy of SciencesWarsaw2012417432 ·Zbl 1328.46065 |
[30] | [30] S. Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), no. 1, 195-211. 10.1007/s002200050385WangS.Quantum symmetry groups of finite spacesComm. Math. Phys.19519981195211 ·Zbl 1013.17008 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.