Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e.g.functions,functorial, etc.). Otherwise the search isexact.
"Topological group"Phrases (multi-words) should be set in"straight quotation marks".
au: Bourbaki & ti: AlgebraSearch forauthor andtitle. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator | allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so: Eur* J* Mat* Soc* cc: 14Search for publications in a particularsource with aMathematics SubjectClassificationcode (cc) in14.
"Partial diff* eq*" ! ellipticThenot-operator! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set to books; alternatively:j forjournal articles,a forbook articles.
py: 2000-2015 cc: (94A | 11T)Numberranges are accepted. Terms can be grouped within(parentheses).
la: chineseFind documents in a givenlanguage.ISO 639-1 language codes can also be used.

Fields

anyanywhere
aninternal document identifier
auauthor, editor
aiinternal author identifier
tititle
lalanguage
sosource
abreview, abstract
pypublication year
rvreviewer
ccMSC code
utuncontrolled term
dtdocument type (j: journal article;b: book;a: book article)

Operators

a& blogic and
a| blogic or
!ablogic not
abc*right wildcard
"ab c"phrase
(ab c)parentheses

See also ourGeneral Help.

On Farey table and its compression for space optimization with guaranteed error bounds.(English)Zbl 1375.94093

Summary: Farey sequences, introduced by such renowned mathematicians as John Farey, Charles Haros, and Augustin-L. Cauchy over 200 years ago, are quite well- known by today in theory of fractions, but its computational perspectives are possibly not yet explored up to its merit. In this paper, we present some novel theoretical results and efficient algorithms for representation of a Farey sequence through a Farey table. The ranks of the fractions in a Farey sequence are stored in the Farey table to provide an efficient solution to the rank problem, thereby aiding in and speeding up any application frequently requiring fraction ranks for computational speed-up. As the size of the Farey sequence grows quadratically with its order, the Farey table becomes inadvertently large, which calls for its (lossy) compressionup to a permissible error. We have, therefore, proposed two compression schemes to obtain a compressed Farey table (CFT). The necessary analysis has been done in detail to derive the error bound in a CFT. As the final step towards space optimization, we have also shown how a CFT can be stored in a 1-dimensional array. Experimental results have been furnished to demonstrate the characteristics andefficiency of a Farey table and its compressed form.

MSC:

94A55 Shift register sequences and sequences over finite alphabets in information and communication theory
11K36 Well-distributed sequences and other variations

Cite

© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp