Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Scalable algorithms for three-field mixed finite element coupled poromechanics.(English)Zbl 1373.76312

Summary: We introduce a class of block preconditioners for accelerating the iterative solution of coupled poromechanics equations based on a three-field formulation. The use of a displacement/velocity/pressure mixed finite-element method combined with a first order backward difference formula for the approximation of time derivatives produces a sequence of linear systems with a \(3 \times 3\) unsymmetric and indefinite block matrix. The preconditioners are obtained by approximating the two-level Schur complement with the aid of physically-based arguments that can be also generalized in a purely algebraic approach. A theoretical and experimental analysis is presented that provides evidence of the robustness, efficiency and scalability of the proposed algorithm. The performance is also assessed for a real-world challenging consolidation experiment of a shallow formation.

MSC:

76S05 Flows in porous media; filtration; seepage
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65F08 Preconditioners for iterative methods

Cite

References:

[1]Hettema, M. H.H.; Schutjens, P. M.T. M.; Verboom, B. J.M.; Gussinklo, H. J., Production-induced compaction of a sandstone reservoir: the strong influence of stress path, SPE Reserv. Eval. Eng., 3, 4, 342-347 (2000)
[2]Garipov, T. A.; Karimi-Fard, M.; Tchelepi, H. A., Discrete fracture model for coupled flow and geomechanics, Comput. Geosci., 20, 1, 149-160 (2016) ·Zbl 1392.76079
[3]Teatini, P.; Ferronato, M.; Gambolati, G.; Gonella, M., Groundwater pumping and land subsidence in the Emilia-Romagna coastland, Italy: modeling the past occurrence and the future trend, Water Resour. Res., 42, 1, Article W01406 pp. (2006)
[4]Luo, Z. J.; Zeng, F., Finite element numerical simulation of land subsidence and groundwater exploitation based on visco-elastic-plastic Biot’s consolidation theory, J. Hydrodyn., 23, 5, 615-624 (2011)
[5]Mahmoudpour, M.; Khamehchiyan, M.; Nikedul, M. R.; Ghassemi, M. R., Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran, Eng. Geol., 201, 6-28 (2016)
[6]Dempsey, D.; Kelkar, S.; Davatzes, N.; Hickman, S.; Moos, D., Numerical modeling of injection, stress and permeability enhancement during shear stimulation at the desert peak enhanced geothermal system, Int. J. Rock Mech. Min. Sci., 78, 190-206 (2015)
[7]Pan, L.; Freifeld, B.; Doughty, C.; Zakem, S.; Sheu, M.; Cutright, B.; Terrall, T., Fully coupled wellbore-reservoir modeling of geothermal heat extraction using \(CO_2\) as the working fluid, Geothermics, 53, 100-113 (2015)
[8]Ferronato, M.; Gambolati, G.; Janna, C.; Teatini, P., Geomechanical issues of anthropogenic \(CO_2\) sequestration in exploited gas fields, Energy Convers. Manag., 51, 10, 1918-1928 (2010)
[9]Teatini, P.; Castelletto, N.; Gambolati, G., 3D geomechanical modeling for \(CO_2\) geological storage in faulted formations: a case study in an offshore northern Adriatic reservoir, Italy, Int. J. Greenh. Gas Control, 22, 63-76 (2014)
[10]White, J. A.; Chiaramonte, L.; Ezzedine, S.; Foxall, W.; Hao, Y.; Ramirez, A.; McNab, W., Geomechanical behavior of the reservoir and caprock system at the in Salah \(CO_2\) storage project, Proc. Natl. Acad. Sci., 111, 24, 8747-8752 (2014)
[11]Cowin, S. C., Bone poroelasticity, J. Biomech., 32, 3, 217-238 (1999)
[12]Frijns, A. J.H., A Four-Component Mixture Theory Applied to Cartilaginous Tissues: Numerical Modelling and Experiments (2000), Technische Universiteit Eindhoven: Technische Universiteit Eindhoven The Netherlands, PhD thesis ·Zbl 0966.92002
[13]Geertsma, J., Problems of rock mechanics in petroleum production engineering, (Proc. 1st Cong. Int. Soc. Rock Mech., vol. 1 (1966), International Society for Rock Mechanics), 585-594
[14]Biot, M. A., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155-164 (1941) ·JFM 67.0837.01
[15]Coussy, O., Poromechanics (2004), Wiley: Wiley Chichester, UK
[16]Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer-Verlag: Springer-Verlag New York, NY, USA ·Zbl 0788.73002
[17]Lewis, R. W.; Schrefler, B. A., The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media (1998), Wiley: Wiley Chichester, UK ·Zbl 0935.74004
[18]Murad, M. A.; Loula, A. F.D., On stability and convergence of finite element approximations of Biot’s consolidation problem, Int. J. Numer. Methods Eng., 37, 4, 645-667 (1994) ·Zbl 0791.76047
[19]Wan, J., Stabilized Finite Element Methods for Coupled Geomechanics and Multiphase Flow (2002), Stanford University, PhD thesis
[20]White, J. A.; Borja, R. I., Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients, Comput. Methods Appl. Mech. Eng., 197, 49-50, 4353-4366 (2008) ·Zbl 1194.74480
[21]Rodrigo, C.; Gaspar, F.; Hu, X.; Zikatanov, L., Stability and monotonicity for some discretizations of the Biot’s consolidation model, Comput. Methods Appl. Mech. Eng., 298, 183-204 (2016) ·Zbl 1425.74164
[22]Jha, B.; Juanes, R., A locally conservative finite element framework for the simulation of coupled flow and reservoir geomechanics, Acta Geotech., 2, 3, 139-153 (2007)
[23]Phillips, P. J.; Wheeler, M. F., A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case, Comput. Geosci., 11, 2, 131-144 (2007) ·Zbl 1117.74015
[24]Phillips, P. J.; Wheeler, M. F., A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: the discrete-in-time case, Comput. Geosci., 11, 2, 145-158 (2007) ·Zbl 1117.74016
[25]Ferronato, M.; Castelletto, N.; Gambolati, G., A fully coupled 3-D mixed finite element model of Biot consolidation, J. Comput. Phys., 229, 12, 4813-4830 (2010) ·Zbl 1305.76055
[26]Haga, J. B.; Osnes, H.; Langtangen, H. P., On the causes of pressure oscillations in low-permeable and low-compressible porous media, Int. J. Numer. Anal. Methods Geomech., 36, 12, 1507-1522 (2012)
[27]Turan, E.; Arbenz, P., Large scale micro finite element analysis of 3D bone poroelasticity, Parallel Comput., 40, 7, 239-250 (2014)
[28]Yi, S.-Y., Convergence analysis of a new mixed finite element method for Biot’s consolidation model, Numer. Methods Partial Differ. Equ., 30, 4, 1189-1210 (2014) ·Zbl 1350.74024
[29]Ferronato, M.; Pini, G.; Gambolati, G., The role of preconditioning in the solution to FE coupled consolidation equations by Krylov subspace methods, Int. J. Numer. Anal. Methods Geomech., 33, 3, 405-423 (2009) ·Zbl 1272.74610
[30]White, J. A.; Borja, R., Block-preconditioned Newton-Krylov solvers for fully coupled flow and geomechanics, Comput. Geosci., 15, 4, 647-659 (2011) ·Zbl 1367.76034
[31]Bergamaschi, L.; Martínez, Á., RMCP: relaxed mixed constraint preconditioners for saddle point linear systems arising in geomechanics, Comput. Methods Appl. Mech. Eng., 221-222, 54-62 (2012) ·Zbl 1253.74032
[32]Kim, J.; Tchelepi, H. A.; Juanes, R., Stability, accuracy and efficiency of sequential methods for coupled flow and geomechanics, SPE J., 16, 2, 249-262 (2011) ·Zbl 1228.74106
[33]White, J. A.; Castelletto, N.; Tchelepi, H. A., Block-partitioned solvers for coupled poromechanics: a unified framework, Comput. Methods Appl. Mech. Eng., 303, 55-74 (2016) ·Zbl 1425.74497
[34]Jha, B.; Juanes, R., Coupled multiphase flow and poromechanics: a computational model of pore pressure effects on fault slip and earthquake triggering, Water Resour. Res., 5, 3776-3808 (2014)
[35]Castelletto, N.; Ferronato, M.; Gambolati, G., Thermo-hydro-mechanical modeling of fluid geological storage by Godunov-mixed methods, Int. J. Numer. Methods Eng., 90, 8, 988-1009 (2012) ·Zbl 1242.76157
[36]Wang, H. F., Theory of Linear Poroelasticity (2000), Princeton University Press: Princeton University Press Princeton, NJ, USA
[37]Booker, J. R.; Small, J. C., An investigation of the stability of numerical solutions of Biot’s equations of consolidation, Int. J. Solids Struct., 11, 7, 907-917 (1975) ·Zbl 0311.73047
[38]Quarteroni, A.; Sacco, R.; Saleri, F., Numerical Mathematics (2007), Springer-Verlag: Springer-Verlag New York, NY, USA ·Zbl 0913.65002
[39]Axelsson, O.; Blaheta, R.; Byczanski, P., Stable discretization of poroelasticity problems and efficient preconditioners for arising saddle point type matrices, Comput. Vis. Sci., 15, 4, 191-207 (2012) ·Zbl 1388.74035
[40]Van der Vorst, H. A., Bi-CGSTAB: a fast and smoothly converging variant of bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 2, 631-644 (1992) ·Zbl 0761.65023
[41]Bramble, J. H.; Pasciak, J. E., A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems, Math. Comput., 50, 181, 1-17 (1988) ·Zbl 0643.65017
[42]Silvester, D. J.; Elman, H. C.; Wathen, A. J., Efficient preconditioning of the linearized Navier-Stokes equations for incompressible flow, J. Comput. Appl. Math., 128, 1-2, 261-279 (2001) ·Zbl 0983.76051
[43]Elman, H. C.; Silvester, D. J.; Wathen, A. J., Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations, Numer. Math., 90, 4, 665-688 (2002) ·Zbl 1143.76531
[44]Simoncini, V., Block triangular preconditioners for symmetric saddle-point problems, Appl. Numer. Math., 49, 1, 63-80 (2004) ·Zbl 1053.65033
[45]Benzi, M.; Golub, G. H.; Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14, 1-137 (2005) ·Zbl 1115.65034
[46]Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869 (1986) ·Zbl 0599.65018
[47]Greenbaum, A.; Pták, V.; Strakoš, Z., Any nonincreasing convergence curve is possible for GMRES, SIAM J. Matrix Anal. Appl., 17, 3, 465-469 (1996) ·Zbl 0857.65029
[48]Bergamaschi, L.; Mantica, S.; Saleri, F., Mixed Finite Element Approximation of Darcy’s Law in Porous Media (1994), Tech. Rep. CRS4-ApplMath-94-17, CRS4, Italy
[49]Rice, J. R.; Cleary, M. P., Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents, Rev. Geophys., 14, 2, 227-241 (1976)
[50]Verruijt, A., Elastic storage of aquifers, (De Wiest, R. J.M., Flow Through Porous Media (1969), Academic Press: Academic Press New York, NY, USA), 929-936
[51]Gambolati, G.; Teatini, P.; Baù, D.; Ferronato, M., Importance of poroelastic coupling in dynamically active aquifers of the Po river basin, Italy, Water Resour. Res., 36, 9, 2443-2459 (2000)
[52]Kim, J.; Tchelepi, H. A.; Juanes, R., Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits, Comput. Methods Appl. Mech. Eng., 200, 13, 1591-1606 (2011) ·Zbl 1228.74101
[53]Mikelić, A.; Wheeler, M. F., Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 17, 3, 455-461 (2013) ·Zbl 1392.35235
[54]Girault, V.; Kumar, K.; Wheeler, M. F., Convergence of iterative coupling of geomechanics with flow in a fractured poroelastic medium, Comput. Geosci., 20, 5, 997-1011 (2016) ·Zbl 1391.76650
[55]Almani, T.; Kumar, K.; Dogru, A.; Singh, G.; Wheeler, M. F., Convergence analysis of multirate fixed-stress split iterative schemes for coupling flow with geomechanics, Comput. Methods Appl. Mech. Eng., 311, 180-207 (2016) ·Zbl 1439.74183
[56]Ghaboussi, J.; Wilson, E. L., Flow of compressible fluid in porous elastic media, Int. J. Numer. Methods Eng., 5, 3, 419-442 (1973) ·Zbl 0248.76037
[57]Vermeer, P. A.; Verruijt, A., An accuracy condition for consolidation by finite elements, Int. J. Numer. Anal. Methods Geomech., 5, 1, 1-14 (1981) ·Zbl 0456.73060
[58]Ferronato, M.; Gambolati, G.; Teatini, P., Ill-conditioning of finite element poroelasticity equations, Int. J. Solids Struct., 38, 34, 5995-6014 (2001) ·Zbl 1075.74643
[59]Mandel, J., Consolidation des sols (Étude mathématique), Geotechnique, 3, 7, 287-299 (1953)
[60]Abousleiman, Y.; Cheng, A. H.-D.; Cui, L.; Detournay, E.; Roegiers, J.-C., Mandel’s problem revisited, Geotechnique, 46, 2, 187-195 (1996)
[61]Castelletto, N.; White, J. A.; Tchelepi, H. A., Accuracy and convergence properties of the fixed-stress iterative solution of two-way coupled poromechanics, Int. J. Numer. Anal. Methods Geomech., 39, 14, 1593-1618 (2015)
[62]HSL, A collection of Fortran codes for large scale scientific computation (2013)
[63]Janna, C.; Ferronato, M.; Gambolati, G., A block FSAI-ILU parallel preconditioner for symmetric positive definite linear systems, SIAM J. Sci. Comput., 32, 5, 2468-2484 (2010) ·Zbl 1220.65037
[64]Janna, C.; Ferronato, M.; Gambolati, G., Enhanced block FSAI preconditioning using domain decomposition techniques, SIAM J. Sci. Comput., 35, 5, S229-S249 (2013) ·Zbl 1288.65034
[65]Janna, C.; Ferronato, M.; Sartoretto, F.; Gambolati, G., FSAIPACK: a software package for high-performance factored sparse approximate inverse preconditioning, ACM Trans. Math. Softw., 41, 2, 10 (2015) ·Zbl 1369.65052
[66]Lin, C.; Moré, C. C., Incomplete Cholesky factorizations with limited memory, SIAM J. Sci. Comput., 21, 1, 24-45 (1999) ·Zbl 0941.65033
[67]Gambolati, G.; Pini, G.; Ferronato, M., Numerical performance of projection methods in finite element consolidation models, Int. J. Numer. Anal. Methods Geomech., 25, 14, 1429-1447 (2001) ·Zbl 1112.74513
[68]Axelsson, O.; Gustafsson, I., Iterative methods for the solution of the Navier equations of elasticity, Comput. Methods Appl. Mech. Eng., 15, 2, 241-258 (1978) ·Zbl 0402.73028
[69]Blaheta, R., Displacement decomposition-incomplete factorization preconditioning techniques for linear elasticity problems, Numer. Linear Algebra Appl., 1, 2, 107-128 (1994) ·Zbl 0837.65021
[70]Gustafsson, I.; Lindskog, G., On parallel solution of linear elasticity problems, part I: theory, Numer. Linear Algebra Appl., 5, 2, 123-139 (1998) ·Zbl 0935.74079
[71]Gee, M. W.; Siefert, C. M.; Hu, J. J.; Tuminaro, R. S.; Sala, M. G., ML 5.0 Smoothed Aggregation User’s Guide (2006), Sandia National Laboratories, Tech. Rep. SAND2006-2649
[72]Sala, M.; Heroux, M., Robust Algebraic Preconditioners with IFPACK 3.0 (2005), Sandia National Laboratories, Tech. Rep. SAND2005-0662
[73]Bangerth, W.; Hartmann, R.; Kanschat, G., Deal, II a general-purpose object-oriented finite element library, ACM Trans. Math. Softw., 33, 4, 24 (2007) ·Zbl 1365.65248
[74]Heroux, M. A.; Bartlett, R. A.; Howle, V. E.; Hoekstra, R. J.; Hu, J. J.; Kolda, T. G.; Lehoucq, R. B.; Long, K. R.; Pawlowski, R. P.; Phipps, E. T.; Salinger, A. G.; Thornquist, H. K.; Tuminaro, R. S.; Willenbring, J. M.; Williams, A.; Stanley, K. S., An overview of the Trilinos project, ACM Trans. Math. Softw., 31, 3, 397-423 (2005) ·Zbl 1136.65354
[75]Berengo, V.; Leoni, M.; Simonini, P., Numerical modelling of the time-dependent behaviour of Venice lagoon silts, (Singh, D., Proceedings of 12th International Conference of the International Association for Computer Methods and Advances in Geomechanics. Proceedings of 12th International Conference of the International Association for Computer Methods and Advances in Geomechanics, IACMAG (2008)), 929-936
[76]Castelletto, N.; Gambolati, G.; Teatini, P., A coupled MFE poromechanical model of a large-scale load experiment at the coastland of Venice, Comput. Geosci., 19, 1, 17-29 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp