[1] | Hettema, M. H.H.; Schutjens, P. M.T. M.; Verboom, B. J.M.; Gussinklo, H. J., Production-induced compaction of a sandstone reservoir: the strong influence of stress path, SPE Reserv. Eval. Eng., 3, 4, 342-347 (2000) |
[2] | Garipov, T. A.; Karimi-Fard, M.; Tchelepi, H. A., Discrete fracture model for coupled flow and geomechanics, Comput. Geosci., 20, 1, 149-160 (2016) ·Zbl 1392.76079 |
[3] | Teatini, P.; Ferronato, M.; Gambolati, G.; Gonella, M., Groundwater pumping and land subsidence in the Emilia-Romagna coastland, Italy: modeling the past occurrence and the future trend, Water Resour. Res., 42, 1, Article W01406 pp. (2006) |
[4] | Luo, Z. J.; Zeng, F., Finite element numerical simulation of land subsidence and groundwater exploitation based on visco-elastic-plastic Biot’s consolidation theory, J. Hydrodyn., 23, 5, 615-624 (2011) |
[5] | Mahmoudpour, M.; Khamehchiyan, M.; Nikedul, M. R.; Ghassemi, M. R., Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran, Eng. Geol., 201, 6-28 (2016) |
[6] | Dempsey, D.; Kelkar, S.; Davatzes, N.; Hickman, S.; Moos, D., Numerical modeling of injection, stress and permeability enhancement during shear stimulation at the desert peak enhanced geothermal system, Int. J. Rock Mech. Min. Sci., 78, 190-206 (2015) |
[7] | Pan, L.; Freifeld, B.; Doughty, C.; Zakem, S.; Sheu, M.; Cutright, B.; Terrall, T., Fully coupled wellbore-reservoir modeling of geothermal heat extraction using \(CO_2\) as the working fluid, Geothermics, 53, 100-113 (2015) |
[8] | Ferronato, M.; Gambolati, G.; Janna, C.; Teatini, P., Geomechanical issues of anthropogenic \(CO_2\) sequestration in exploited gas fields, Energy Convers. Manag., 51, 10, 1918-1928 (2010) |
[9] | Teatini, P.; Castelletto, N.; Gambolati, G., 3D geomechanical modeling for \(CO_2\) geological storage in faulted formations: a case study in an offshore northern Adriatic reservoir, Italy, Int. J. Greenh. Gas Control, 22, 63-76 (2014) |
[10] | White, J. A.; Chiaramonte, L.; Ezzedine, S.; Foxall, W.; Hao, Y.; Ramirez, A.; McNab, W., Geomechanical behavior of the reservoir and caprock system at the in Salah \(CO_2\) storage project, Proc. Natl. Acad. Sci., 111, 24, 8747-8752 (2014) |
[11] | Cowin, S. C., Bone poroelasticity, J. Biomech., 32, 3, 217-238 (1999) |
[12] | Frijns, A. J.H., A Four-Component Mixture Theory Applied to Cartilaginous Tissues: Numerical Modelling and Experiments (2000), Technische Universiteit Eindhoven: Technische Universiteit Eindhoven The Netherlands, PhD thesis ·Zbl 0966.92002 |
[13] | Geertsma, J., Problems of rock mechanics in petroleum production engineering, (Proc. 1st Cong. Int. Soc. Rock Mech., vol. 1 (1966), International Society for Rock Mechanics), 585-594 |
[14] | Biot, M. A., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155-164 (1941) ·JFM 67.0837.01 |
[15] | Coussy, O., Poromechanics (2004), Wiley: Wiley Chichester, UK |
[16] | Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer-Verlag: Springer-Verlag New York, NY, USA ·Zbl 0788.73002 |
[17] | Lewis, R. W.; Schrefler, B. A., The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media (1998), Wiley: Wiley Chichester, UK ·Zbl 0935.74004 |
[18] | Murad, M. A.; Loula, A. F.D., On stability and convergence of finite element approximations of Biot’s consolidation problem, Int. J. Numer. Methods Eng., 37, 4, 645-667 (1994) ·Zbl 0791.76047 |
[19] | Wan, J., Stabilized Finite Element Methods for Coupled Geomechanics and Multiphase Flow (2002), Stanford University, PhD thesis |
[20] | White, J. A.; Borja, R. I., Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients, Comput. Methods Appl. Mech. Eng., 197, 49-50, 4353-4366 (2008) ·Zbl 1194.74480 |
[21] | Rodrigo, C.; Gaspar, F.; Hu, X.; Zikatanov, L., Stability and monotonicity for some discretizations of the Biot’s consolidation model, Comput. Methods Appl. Mech. Eng., 298, 183-204 (2016) ·Zbl 1425.74164 |
[22] | Jha, B.; Juanes, R., A locally conservative finite element framework for the simulation of coupled flow and reservoir geomechanics, Acta Geotech., 2, 3, 139-153 (2007) |
[23] | Phillips, P. J.; Wheeler, M. F., A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case, Comput. Geosci., 11, 2, 131-144 (2007) ·Zbl 1117.74015 |
[24] | Phillips, P. J.; Wheeler, M. F., A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: the discrete-in-time case, Comput. Geosci., 11, 2, 145-158 (2007) ·Zbl 1117.74016 |
[25] | Ferronato, M.; Castelletto, N.; Gambolati, G., A fully coupled 3-D mixed finite element model of Biot consolidation, J. Comput. Phys., 229, 12, 4813-4830 (2010) ·Zbl 1305.76055 |
[26] | Haga, J. B.; Osnes, H.; Langtangen, H. P., On the causes of pressure oscillations in low-permeable and low-compressible porous media, Int. J. Numer. Anal. Methods Geomech., 36, 12, 1507-1522 (2012) |
[27] | Turan, E.; Arbenz, P., Large scale micro finite element analysis of 3D bone poroelasticity, Parallel Comput., 40, 7, 239-250 (2014) |
[28] | Yi, S.-Y., Convergence analysis of a new mixed finite element method for Biot’s consolidation model, Numer. Methods Partial Differ. Equ., 30, 4, 1189-1210 (2014) ·Zbl 1350.74024 |
[29] | Ferronato, M.; Pini, G.; Gambolati, G., The role of preconditioning in the solution to FE coupled consolidation equations by Krylov subspace methods, Int. J. Numer. Anal. Methods Geomech., 33, 3, 405-423 (2009) ·Zbl 1272.74610 |
[30] | White, J. A.; Borja, R., Block-preconditioned Newton-Krylov solvers for fully coupled flow and geomechanics, Comput. Geosci., 15, 4, 647-659 (2011) ·Zbl 1367.76034 |
[31] | Bergamaschi, L.; Martínez, Á., RMCP: relaxed mixed constraint preconditioners for saddle point linear systems arising in geomechanics, Comput. Methods Appl. Mech. Eng., 221-222, 54-62 (2012) ·Zbl 1253.74032 |
[32] | Kim, J.; Tchelepi, H. A.; Juanes, R., Stability, accuracy and efficiency of sequential methods for coupled flow and geomechanics, SPE J., 16, 2, 249-262 (2011) ·Zbl 1228.74106 |
[33] | White, J. A.; Castelletto, N.; Tchelepi, H. A., Block-partitioned solvers for coupled poromechanics: a unified framework, Comput. Methods Appl. Mech. Eng., 303, 55-74 (2016) ·Zbl 1425.74497 |
[34] | Jha, B.; Juanes, R., Coupled multiphase flow and poromechanics: a computational model of pore pressure effects on fault slip and earthquake triggering, Water Resour. Res., 5, 3776-3808 (2014) |
[35] | Castelletto, N.; Ferronato, M.; Gambolati, G., Thermo-hydro-mechanical modeling of fluid geological storage by Godunov-mixed methods, Int. J. Numer. Methods Eng., 90, 8, 988-1009 (2012) ·Zbl 1242.76157 |
[36] | Wang, H. F., Theory of Linear Poroelasticity (2000), Princeton University Press: Princeton University Press Princeton, NJ, USA |
[37] | Booker, J. R.; Small, J. C., An investigation of the stability of numerical solutions of Biot’s equations of consolidation, Int. J. Solids Struct., 11, 7, 907-917 (1975) ·Zbl 0311.73047 |
[38] | Quarteroni, A.; Sacco, R.; Saleri, F., Numerical Mathematics (2007), Springer-Verlag: Springer-Verlag New York, NY, USA ·Zbl 0913.65002 |
[39] | Axelsson, O.; Blaheta, R.; Byczanski, P., Stable discretization of poroelasticity problems and efficient preconditioners for arising saddle point type matrices, Comput. Vis. Sci., 15, 4, 191-207 (2012) ·Zbl 1388.74035 |
[40] | Van der Vorst, H. A., Bi-CGSTAB: a fast and smoothly converging variant of bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 2, 631-644 (1992) ·Zbl 0761.65023 |
[41] | Bramble, J. H.; Pasciak, J. E., A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems, Math. Comput., 50, 181, 1-17 (1988) ·Zbl 0643.65017 |
[42] | Silvester, D. J.; Elman, H. C.; Wathen, A. J., Efficient preconditioning of the linearized Navier-Stokes equations for incompressible flow, J. Comput. Appl. Math., 128, 1-2, 261-279 (2001) ·Zbl 0983.76051 |
[43] | Elman, H. C.; Silvester, D. J.; Wathen, A. J., Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations, Numer. Math., 90, 4, 665-688 (2002) ·Zbl 1143.76531 |
[44] | Simoncini, V., Block triangular preconditioners for symmetric saddle-point problems, Appl. Numer. Math., 49, 1, 63-80 (2004) ·Zbl 1053.65033 |
[45] | Benzi, M.; Golub, G. H.; Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14, 1-137 (2005) ·Zbl 1115.65034 |
[46] | Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869 (1986) ·Zbl 0599.65018 |
[47] | Greenbaum, A.; Pták, V.; Strakoš, Z., Any nonincreasing convergence curve is possible for GMRES, SIAM J. Matrix Anal. Appl., 17, 3, 465-469 (1996) ·Zbl 0857.65029 |
[48] | Bergamaschi, L.; Mantica, S.; Saleri, F., Mixed Finite Element Approximation of Darcy’s Law in Porous Media (1994), Tech. Rep. CRS4-ApplMath-94-17, CRS4, Italy |
[49] | Rice, J. R.; Cleary, M. P., Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents, Rev. Geophys., 14, 2, 227-241 (1976) |
[50] | Verruijt, A., Elastic storage of aquifers, (De Wiest, R. J.M., Flow Through Porous Media (1969), Academic Press: Academic Press New York, NY, USA), 929-936 |
[51] | Gambolati, G.; Teatini, P.; Baù, D.; Ferronato, M., Importance of poroelastic coupling in dynamically active aquifers of the Po river basin, Italy, Water Resour. Res., 36, 9, 2443-2459 (2000) |
[52] | Kim, J.; Tchelepi, H. A.; Juanes, R., Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits, Comput. Methods Appl. Mech. Eng., 200, 13, 1591-1606 (2011) ·Zbl 1228.74101 |
[53] | Mikelić, A.; Wheeler, M. F., Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 17, 3, 455-461 (2013) ·Zbl 1392.35235 |
[54] | Girault, V.; Kumar, K.; Wheeler, M. F., Convergence of iterative coupling of geomechanics with flow in a fractured poroelastic medium, Comput. Geosci., 20, 5, 997-1011 (2016) ·Zbl 1391.76650 |
[55] | Almani, T.; Kumar, K.; Dogru, A.; Singh, G.; Wheeler, M. F., Convergence analysis of multirate fixed-stress split iterative schemes for coupling flow with geomechanics, Comput. Methods Appl. Mech. Eng., 311, 180-207 (2016) ·Zbl 1439.74183 |
[56] | Ghaboussi, J.; Wilson, E. L., Flow of compressible fluid in porous elastic media, Int. J. Numer. Methods Eng., 5, 3, 419-442 (1973) ·Zbl 0248.76037 |
[57] | Vermeer, P. A.; Verruijt, A., An accuracy condition for consolidation by finite elements, Int. J. Numer. Anal. Methods Geomech., 5, 1, 1-14 (1981) ·Zbl 0456.73060 |
[58] | Ferronato, M.; Gambolati, G.; Teatini, P., Ill-conditioning of finite element poroelasticity equations, Int. J. Solids Struct., 38, 34, 5995-6014 (2001) ·Zbl 1075.74643 |
[59] | Mandel, J., Consolidation des sols (Étude mathématique), Geotechnique, 3, 7, 287-299 (1953) |
[60] | Abousleiman, Y.; Cheng, A. H.-D.; Cui, L.; Detournay, E.; Roegiers, J.-C., Mandel’s problem revisited, Geotechnique, 46, 2, 187-195 (1996) |
[61] | Castelletto, N.; White, J. A.; Tchelepi, H. A., Accuracy and convergence properties of the fixed-stress iterative solution of two-way coupled poromechanics, Int. J. Numer. Anal. Methods Geomech., 39, 14, 1593-1618 (2015) |
[62] | HSL, A collection of Fortran codes for large scale scientific computation (2013) |
[63] | Janna, C.; Ferronato, M.; Gambolati, G., A block FSAI-ILU parallel preconditioner for symmetric positive definite linear systems, SIAM J. Sci. Comput., 32, 5, 2468-2484 (2010) ·Zbl 1220.65037 |
[64] | Janna, C.; Ferronato, M.; Gambolati, G., Enhanced block FSAI preconditioning using domain decomposition techniques, SIAM J. Sci. Comput., 35, 5, S229-S249 (2013) ·Zbl 1288.65034 |
[65] | Janna, C.; Ferronato, M.; Sartoretto, F.; Gambolati, G., FSAIPACK: a software package for high-performance factored sparse approximate inverse preconditioning, ACM Trans. Math. Softw., 41, 2, 10 (2015) ·Zbl 1369.65052 |
[66] | Lin, C.; Moré, C. C., Incomplete Cholesky factorizations with limited memory, SIAM J. Sci. Comput., 21, 1, 24-45 (1999) ·Zbl 0941.65033 |
[67] | Gambolati, G.; Pini, G.; Ferronato, M., Numerical performance of projection methods in finite element consolidation models, Int. J. Numer. Anal. Methods Geomech., 25, 14, 1429-1447 (2001) ·Zbl 1112.74513 |
[68] | Axelsson, O.; Gustafsson, I., Iterative methods for the solution of the Navier equations of elasticity, Comput. Methods Appl. Mech. Eng., 15, 2, 241-258 (1978) ·Zbl 0402.73028 |
[69] | Blaheta, R., Displacement decomposition-incomplete factorization preconditioning techniques for linear elasticity problems, Numer. Linear Algebra Appl., 1, 2, 107-128 (1994) ·Zbl 0837.65021 |
[70] | Gustafsson, I.; Lindskog, G., On parallel solution of linear elasticity problems, part I: theory, Numer. Linear Algebra Appl., 5, 2, 123-139 (1998) ·Zbl 0935.74079 |
[71] | Gee, M. W.; Siefert, C. M.; Hu, J. J.; Tuminaro, R. S.; Sala, M. G., ML 5.0 Smoothed Aggregation User’s Guide (2006), Sandia National Laboratories, Tech. Rep. SAND2006-2649 |
[72] | Sala, M.; Heroux, M., Robust Algebraic Preconditioners with IFPACK 3.0 (2005), Sandia National Laboratories, Tech. Rep. SAND2005-0662 |
[73] | Bangerth, W.; Hartmann, R.; Kanschat, G., Deal, II a general-purpose object-oriented finite element library, ACM Trans. Math. Softw., 33, 4, 24 (2007) ·Zbl 1365.65248 |
[74] | Heroux, M. A.; Bartlett, R. A.; Howle, V. E.; Hoekstra, R. J.; Hu, J. J.; Kolda, T. G.; Lehoucq, R. B.; Long, K. R.; Pawlowski, R. P.; Phipps, E. T.; Salinger, A. G.; Thornquist, H. K.; Tuminaro, R. S.; Willenbring, J. M.; Williams, A.; Stanley, K. S., An overview of the Trilinos project, ACM Trans. Math. Softw., 31, 3, 397-423 (2005) ·Zbl 1136.65354 |
[75] | Berengo, V.; Leoni, M.; Simonini, P., Numerical modelling of the time-dependent behaviour of Venice lagoon silts, (Singh, D., Proceedings of 12th International Conference of the International Association for Computer Methods and Advances in Geomechanics. Proceedings of 12th International Conference of the International Association for Computer Methods and Advances in Geomechanics, IACMAG (2008)), 929-936 |
[76] | Castelletto, N.; Gambolati, G.; Teatini, P., A coupled MFE poromechanical model of a large-scale load experiment at the coastland of Venice, Comput. Geosci., 19, 1, 17-29 (2015) |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.