Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Mass transference principle for limsup sets generated by rectangles.(English)Zbl 1371.11119

Summary: We generalise the mass transference principle established byV. Beresnevich andS. Velani [Ann. Math. (2) 164, No. 3, 971–992 (2006;Zbl 1148.11033)] to limsup sets generated by rectangles. More precisely, let \(\{x_n\}_{n\geq1}\) be a sequence of points in the unit cube \([0, 1]^d\) with \(d\geq 1\) and \(\{r_n\}_{n\geq1}\) a sequence of positive numbers tending to zero. Under the assumption of full Lebesgue measure theoretical statement of the set \[\big\{x\in [0,1]^d: x\in B(x_n,r_n), \text{ for infinitely many } n\in \mathbb{N}\big\},\] we determine the lower bound of the Hausdorff dimension and Hausdorff measure of the set \[\big\{x\in [0,1]^d: x\in B^{\mathbf{a}}(x_n,r_n), \text{ for infinitely many }n\in \mathbb{N}\big\},\] where \(\mathbf{a}=(a_1,\dots, a_d)\) with \(1\leq a_1\leq a_2\leq\dots\leq a_d\) and \(B^{\mathbf{a}}(x, r)\) denotes a rectangle with center \(x\) and side-length \((r^{a_1}, r^{a_2},\dots,r^{a_d})\). When \(a_1=a_2=\dots=a_d\), the result is included in the setting considered by Beresnevich and Velani [loc. cit.].

MSC:

11J83 Metric theory
28A78 Hausdorff and packing measures
11J13 Simultaneous homogeneous approximation, linear forms
11K60 Diophantine approximation in probabilistic number theory
11J04 Homogeneous approximation to one number

Citations:

Zbl 1148.11033

Cite

References:

[1][1]V.Beresnevich and S.VelaniA mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures. Ann. of Math. (2) 164 (2006), no. 3, 971-992.10.4007/annals.2006.164.971 ·Zbl 1148.11033
[2][2]V.Beresnevich, D.Dickinson and S.VelaniMeasure theoretic laws for lim sup sets. Mem. Amer. Math. Soc.179 (2006), no. 846, x+91 pp.2184760 ·Zbl 1129.11031
[3][3]V. I.Bernik and M. M.DodsonMetric Diophantine approximation on Manifolds Cambridge Tracts in Mathematics 137 (Cambridge University Press, Cambridge, 1999), xii+172 pp.10.1017/CBO9780511565991 ·Zbl 0933.11040
[4][4]J. D.Bovey and M. M.DodsonThe Hausdorff dimension of systems of linear forms. Acta Arith.45 (1986), no. 4, 337-358.0847294 ·Zbl 0534.10025
[5][5]D.Dickinson and S.VelaniHausdorff measure and linear forms. J. Reine Angew. Math.490 (1997), 1-36.1468922 ·Zbl 0880.11058
[6][6]M. M.DodsonHausdorff dimension, lower order and Khintchine’s theorem in metric Diophantine approximation. J. Reine Angew. Math.432 (1992), 69-76.1184759 ·Zbl 0749.11036
[7][7]M. M.DodsonGeometric and probabilistic ideas in the metric theory of Diophantine approximations. Uspekhi Mat. Nauk48 (1993), no.5(293), 77-106. ·Zbl 0831.11039
[8][8]M. M.Dodson, B. P.Rynne and J. A. G.VickersDiophantine approximation and a lower bound for Hausdorff dimension. Mathematika37 (1990), no. 1, 59-73.10.1112/S0025579300012791S00255793000127911067887 ·Zbl 0688.10049
[9][9]K. J.FalconerFractal Geometry, Mathematical Foundations and Application (John Wiley & Sons, Ltd., Chichester, 1990).1102677 ·Zbl 0689.28003
[10][10]A. V.GroshevUne théorème sur les systèmes des formes linéaires. Dokl. Akad. Nauk SSSR9 (1938), 151-152. ·JFM 64.0144.03
[11][11]G.HarmanMetric Number Theory. London Math. Series Monogr. 18 (Clarendon Press, Oxford1998). ·Zbl 1081.11057
[12][12]R.Hill and S.VelaniThe ergodic theory of shrinking targets. Invent. Math.119 (1995), no. 1, 175-198.10.1007/BF012451791309976 ·Zbl 0834.28009
[13][13]R.Hill and S.VelaniThe shrinking target problem for matrix transformations of tori. J. London Math. Soc. (2) 60 (1999), no. 2, 381-398.10.1112/S0024610799007681 ·Zbl 0987.37008
[14][14]I.JarníkUber die simultanen diophantischen Approximationen. Math. Z.33 (1931) 503-543. ·JFM 57.1370.01
[15][15]A.Pollington and R.VaughanThe k-dimensional Duffin and Schaeffer conjecture. Mathematika37 (1990) 190-200.10.1112/S00255793000129001099767 ·Zbl 0715.11036
[16][16]B. P.RynneHausdorff dimension and generalized simultaneous Diophantine approximation. Bull. London Math. Soc.30 (1998), 365-376.10.1112/S00246093980045361620813 ·Zbl 0984.11038 ·doi:10.1112/S0024609398004536
[17][17]W. M.SchmidtDiophantine approximation. Lecture Notes in Math.785 (1980). ·Zbl 0421.10019
[18][18]V.SprindzukMetric theory of Diophantine Approximations (translated by R. A. Silverman). (V. H. Winston & Sons, Washington D.C., 1979).0548467 ·Zbl 0482.10047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp