Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e.g.functions,functorial, etc.). Otherwise the search isexact.
"Topological group"Phrases (multi-words) should be set in"straight quotation marks".
au: Bourbaki & ti: AlgebraSearch forauthor andtitle. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator | allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so: Eur* J* Mat* Soc* cc: 14Search for publications in a particularsource with aMathematics SubjectClassificationcode (cc) in14.
"Partial diff* eq*" ! ellipticThenot-operator! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set to books; alternatively:j forjournal articles,a forbook articles.
py: 2000-2015 cc: (94A | 11T)Numberranges are accepted. Terms can be grouped within(parentheses).
la: chineseFind documents in a givenlanguage.ISO 639-1 language codes can also be used.

Fields

anyanywhere
aninternal document identifier
auauthor, editor
aiinternal author identifier
tititle
lalanguage
sosource
abreview, abstract
pypublication year
rvreviewer
ccMSC code
utuncontrolled term
dtdocument type (j: journal article;b: book;a: book article)

Operators

a& blogic and
a| blogic or
!ablogic not
abc*right wildcard
"ab c"phrase
(ab c)parentheses

See also ourGeneral Help.

On the polyhedra of graceful spheres and circular geodesics.(English)Zbl 1370.68295

Summary: We construct a polyhedral surface called agraceful surface, which provides best possible approximation to a given sphere regarding certain criteria. In digital geometry terms, the graceful surface is uniquely characterized by its minimality while guaranteeing the connectivity of certain discrete (polyhedral) curves defined on it. The notion of “gracefulness” was first proposed in [V. E. Brimkov andR. P. Barneva, Lect. Notes Comput. Sci. 1568, 53–64 (1999;Zbl 0933.68139)] and shown to be useful for triangular mesh discretization through graceful planes and graceful lines. In this paper we extend the considerations to a nonlinear object such as a sphere. In particular, we investigate the properties of a discrete geodesic path between two voxels and show that discrete 3D circles, circular arcs, and Mobius triangles are all constructible on a graceful sphere, with guaranteed minimum thickness and the desired connectivity in the discrete topological space.

MSC:

68U05 Computer graphics; computational geometry (digital and algorithmic aspects)

Citations:

Zbl 0933.68139

Cite

References:

[1]Andres, E., Discrete circles, rings and spheres, Comput. Graph., 18, 5, 695-706 (1994)
[2]Andres, E.; Acharya, R.; Sibata, C., Discrete analytical hyperplanes, Graph. Models Image Process., 59, 5, 302-309 (1997)
[3]Andres, E.; Jacob, M., The discrete analytical hyperspheres, IEEE Trans. Vis. Comput. Graphics, 3, 1, 75-86 (1997)
[4]Andres, E.; Jacob, M.-A., The discrete analytical hyperspheres, IEEE Trans. Vis. Comput. Graphics, 3, 1, 75-86 (1997)
[7]Brimkov, V. E.; Barneva, R. P., Graceful planes and thin tunnel-free meshes, (Discrete Geometry for Computer Imagery. Discrete Geometry for Computer Imagery, Lecture Notes in Computer Science, vol. 1568 (1999), Springer: Springer Berlin, Heidelberg), 53-64 ·Zbl 0933.68139
[8]Brimkov, V. E.; Barneva, R. P., Graceful planes and lines, Theoret. Comput. Sci., 283, 1, 151-170 (2002) ·Zbl 1050.68147
[9]Brimkov, V. E.; Barneva, R. P., Connectivity of discrete planes, Theoret. Comput. Sci., 319, 1-3, 203-227 (2004) ·Zbl 1068.52018
[10]Brimkov, V. E.; Barneva, R. P., Plane digitization and related combinatorial problems, Discrete Appl. Math., 147, 2-3, 169-186 (2005) ·Zbl 1068.68111
[11]Brimkov, V. E.; Barneva, R. P., On the polyhedral complexity of the integer points in a hyperball, Theoret. Comput. Sci., 406, 1-2, 24-30 (2008) ·Zbl 1151.52010
[12]Brimkov, V. E.; Barneva, R. P.; Brimkov, B., Connected distance-based rasterization of objects in arbitrary dimension, Graph. Models, 73, 323-334 (2011)
[13]Brimkov, V. E.; Coeurjolly, D.; Klette, R., Digital planarity—A review, Discrete Appl. Math., 155, 4, 468-495 (2007) ·Zbl 1109.68122
[14]Chamizo, F.; Cristobal, E., The sphere problem and the \(L\)-functions, Acta Math. Hungar., 135, 1-2, 97-115 (2012) ·Zbl 1294.11172
[15]Chamizo, F.; Cristóbal, E.; Ubis, A., Visible lattice points in the sphere, J. Number Theory, 126, 2, 200-211 (2007) ·Zbl 1132.11051
[16]Chamizo, F.; Iwaniec, H., On the sphere problem, Rev. Mat. Iberoam., 11, 2, 417-429 (1995) ·Zbl 0837.11054
[17]Chandru, V.; Manohar, S.; Prakash, C. E., Voxel-based modeling for layered manufacturing, IEEE Comput. Graph. Appl., 15, 6, 42-47 (1995)
[18]Cochran, J. K., Ceramic hollow spheres and their applications, Curr. Opin. Solid State Mater. Sci., 3, 5, 474-479 (1998)
[19]Cohen-Or, D.; Kaufman, A., Fundamentals of surface voxelization, Graph. Models Image Process., 57, 6, 453-461 (1995)
[20]Coxeter, H. S.M., Regular Polytopes (1973), Dover Publications ·Zbl 0258.05119
[21]Ewell, J. A., Counting lattice points on spheres, Math. Intell., 22, 4, 51-53 (2000) ·Zbl 1052.11508
[23]Fomenko, O., Distribution of lattice points over the four-dimensional sphere, J. Math. Sci., 110, 6, 3164-3170 (2002) ·Zbl 1005.11043
[24]Françon, J., On recent trends in discrete geometry in computer science, (Miguet, S.; Montanvert, A.; Ubèda, S., Discrete Geometry for Computer Imagery. Discrete Geometry for Computer Imagery, Lecture Notes in Computer Science, vol. 1176 (1996), Springer: Springer Berlin, Heidelberg), 1-16 ·Zbl 1541.68393
[25]Ghahramani, M.; Garibov, A.; Agayev, T., Production and quality control of radioactive yttrium microspheres for medical applications, Appl. Radiat. Isot., 85, 87-91 (2014)
[26]Guo, L.; Dong, X.; Cui, X.; Cui, F.; Shi, J., Morphology and dispersivity modulation of hollow microporous spheres synthesized by a hard template route, Mater. Lett., 63, 13-14, 1141-1143 (2009)
[28]Hiller, J.; Lipson, H., Design and analysis of digital materials for physical 3D voxel printing, Rapid Prototyp. J., 15, 2, 137-149 (2009)
[29]Hiller, J.; Lipson, H., Tunable digital material properties for 3D voxel printers, Rapid Prototyp. J., 16, 4, 241-247 (2010)
[30]Kawashita, M.; Shineha, R.; Kim, H.-M.; Kokubo, T.; Inoue, Y.; Araki, N.; Nagata, Y.; Hiraoka, M.; Sawada, Y., Preparation of ceramic microspheres for in situ radiotherapy of deep-seated cancer, Biomaterials, 24, 17, 2955-2963 (2003)
[31]Kim, O., Rapid prototyping of electrically small spherical wire antennas, IEEE Trans. Antennas and Propagation, 62, 7, 3839-3842 (2014)
[32]Klette, R.; Rosenfeld, A., Digital Geometry: Geometric Methods for Digital Picture Analysis (2004), Morgan Kaufmann: Morgan Kaufmann San Francisco ·Zbl 1064.68090
[33]Lipson, H.; Pollack, J. B., Automatic design and manufacture of robotic lifeforms, Nature, 406, 974-978 (2000)
[34]Maehara, H., On a sphere that passes through \(n\) lattice points, European J. Combin., 31, 2, 617-621 (2010) ·Zbl 1186.68507
[35]Magyar, A., On the distribution of lattice points on spheres and level surfaces of polynomials, J. Number Theory, 122, 1, 69-83 (2007) ·Zbl 1119.11046
[36]Montani, C.; Scopigno, R., (Glassner, A. S., Graphics gems (Chapter: Spheres-to-voxels conversion) (1990), Academic Press Professional, Inc.: Academic Press Professional, Inc. San Diego, CA, USA), 327-334
[37]Nain, D.; Styner, M.; Niethammer, M.; Levitt, J.; Shenton, J. E.; Gerig, M. G.; Bobick, A.; Tannenbaum, A., Statistical shape analysis of brain structures using spherical wavelets, (Proc. 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2007 (2007)), 209-212
[38]Nanya, T.; Yoshihara, H.; Maekawa, T., Reconstruction of complete 3D models by voxel integration, J. Adv. Mech. Des. Syst. Manuf., 7, 3, 362-376 (2013)
[40]Roget, B.; Sitaraman, J., Wall distance search algorithm using voxelized marching spheres, J. Comput. Phys., 241, 76-94 (2013) ·Zbl 1349.76643
[41]Sene, F. F.; Martinelli, J. R.; Okuno, E., Synthesis and characterization of phosphate glass microspheres for radiotherapy applications, J. Non-Cryst. Solids, 354, 42-44, 4887-4893 (2008)
[42]Toutant, J.-L.; Andres, E.; Roussillon, T., Digital circles, spheres and hyperspheres: From morphological models to analytical characterizations and topological properties, Discrete Appl. Math., 161, 16-17, 2662-2677 (2013) ·Zbl 1291.68412
[43]Tsang, K.-M., Counting lattice points in the sphere, Bull. Lond. Math. Soc., 32, 679-688 (2000) ·Zbl 1025.11033
[44]Zhang, X.; Stockel, J.; Wolf, M.; Cathier, P.; McLennan, G.; Hoffman, E.; Sonka, M., A new method for spherical object detection and its application to computer aided detection of pulmonary nodules in CT images, (Ayache, N.; Ourselin, S.; Maeder, A., Medical Image Computing and Computer-Assisted Intervention, MICCAI 2007 (2007), Springer: Springer Berlin, Heidelberg), 842-849
[45]Zheng, M.; Cao, J.; Chang, X.; Wang, J.; Liu, J.; Ma, X., Preparation of oxide hollow spheres by colloidal carbon spheres, Mater. Lett., 60, 24, 2991-2993 (2006)
[46]Zubko, E.; Petrov, D.; Grynko, Y.; Shkuratov, Y.; Okamoto, H.; Muinonen, K.; Nousiainen, T.; Kimura, H.; Yamamoto, T.; Videen, G., Validity criteria of the discrete dipole approximation, Appl. Opt., 49, 8, 1267-1279 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp