Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On the Toeplitz-Jacobson algebra and direct finiteness.(English)Zbl 1370.16016

Bergen, Jeffrey (ed.) et al., Groups, rings, group rings, and Hopf algebras. International conference, Loyola University, Chicago, IL, USA, October 2–4, 2015 and AMS special session, Loyola University, Chicago, IL, USA, October 3–4, 2015. Held in honor of Donald S. Passman’s 75th birthday. Proceedings. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-2805-1/pbk; 978-1-4704-4042-8/ebook). Contemporary Mathematics 688, 113-124 (2017).
Summary: We study the representation theory of the algebraic Toeplitz algebra \(R=\mathbb {K}\langle x,y\rangle /\langle xy-1\rangle \), give a few new structure and homological theorems, completely determine one-sided ideals and survey and re-obtain results from the existing literature as well. We discuss its connection to Kaplansky’s direct finiteness conjecture, and a possible approach to it based on the module theory of \(R\). In addition, we discuss the conjecture’s connections to several central problems in mathematics, including Connes’ embedding conjecture.
For the entire collection see [Zbl 1365.16002].

MSC:

16R10 \(T\)-ideals, identities, varieties of associative rings and algebras
16E30 Homological functors on modules (Tor, Ext, etc.) in associative algebras

Cite

References:

[1]Abrams, Gene, Leavitt path algebras: the first decade, Bull. Math. Sci., 5, 1, 59-120 (2015) ·Zbl 1329.16002 ·doi:10.1007/s13373-014-0061-7
[2]Abrams, Gene; Mantese, Francesca; Tonolo, Alberto, Extensions of simple modules over Leavitt path algebras, J. Algebra, 431, 78-106 (2015) ·Zbl 1319.16005 ·doi:10.1016/j.jalgebra.2015.01.034
[3]Alahmedi, Adel; Alsulami, Hamed; Jain, Surender; Zelmanov, Efim I., Structure of Leavitt path algebras of polynomial growth, Proc. Natl. Acad. Sci. USA, 110, 38, 15222-15224 (2013) ·Zbl 1296.16008 ·doi:10.1073/pnas.1311216110
[4]Ara, Pere; O’Meara, Kevin C.; Perera, Francesc, Stable finiteness of group rings in arbitrary characteristic, Adv. Math., 170, 2, 224-238 (2002) ·Zbl 1018.20006 ·doi:10.1006/aima.2002.2075
[5]Ara, P.; Moreno, M. A.; Pardo, E., Nonstable \(K\)-theory for graph algebras, Algebr. Represent. Theory, 10, 2, 157-178 (2007) ·Zbl 1123.16006 ·doi:10.1007/s10468-006-9044-z
[6]Ara, Pere; Rangaswamy, Kulumani M., Finitely presented simple modules over Leavitt path algebras, J. Algebra, 417, 333-352 (2014) ·Zbl 1304.16002 ·doi:10.1016/j.jalgebra.2014.06.032
[7]Ara, Pere; Brustenga, Miquel, Module theory over Leavitt path algebras and \(K\)-theory, J. Pure Appl. Algebra, 214, 7, 1131-1151 (2010) ·Zbl 1189.16013 ·doi:10.1016/j.jpaa.2009.10.001
[8]Bavula, V. V., The algebra of one-sided inverses of a polynomial algebra, J. Pure Appl. Algebra, 214, 10, 1874-1897 (2010) ·Zbl 1226.16018 ·doi:10.1016/j.jpaa.2009.12.033
[9]F. Berlai, Groups satisfying Kaplansky’s stable finiteness conjecture, (2015) arXiv/math:1501.02893v1.
[10]Capraro, Valerio; Lupini, Martino, Introduction to sofic and hyperlinear groups and Connes’ embedding conjecture, Lecture Notes in Mathematics 2136, viii+151 pp. (2015), Springer, Cham ·Zbl 1383.20002 ·doi:10.1007/978-3-319-19333-5
[11]Colak, Pinar, Two-sided ideals in Leavitt path algebras, J. Algebra Appl., 10, 5, 801-809 (2011) ·Zbl 1242.16014 ·doi:10.1142/S0219498811004859
[12]Chen, Xiao-Wu, Irreducible representations of Leavitt path algebras, Forum Math., 27, 1, 549-574 (2015) ·Zbl 1332.16006 ·doi:10.1515/forum-2012-0020
[13]Dykema, Ken; Heister, Timo; Juschenko, Kate, Finitely presented groups related to Kaplansky’s direct finiteness conjecture, Exp. Math., 24, 3, 326-338 (2015) ·Zbl 1403.20004 ·doi:10.1080/10586458.2014.993051
[14]Dykema, Ken; Juschenko, Kate, On stable finiteness of group rings, Algebra Discrete Math., 19, 1, 44-47 (2015) ·Zbl 1333.16027
[15]Elek, G{\'a}bor; Szab{\'o}, Endre, Sofic groups and direct finiteness, J. Algebra, 280, 2, 426-434 (2004) ·Zbl 1078.16021 ·doi:10.1016/j.jalgebra.2004.06.023
[16]Gromov, M., Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc. (JEMS), 1, 2, 109-197 (1999) ·Zbl 0998.14001 ·doi:10.1007/PL00011162
[17]Kaplansky, Irving, Fields and rings, ix+198 pp. (1969), The University of Chicago Press, Chicago, Ill.-London ·Zbl 0184.24201
[18]A. Kwiatkowska, V. Pestov, An introduction to hyperlinear and sofic groups, preprint, 2014. ·Zbl 1367.20052
[19]Montgomery, M. Susan, Left and right inverses in group algebras, Bull. Amer. Math. Soc., 75, 539-540 (1969) ·Zbl 0174.31204
[20]Montgomery, Susan, von Neumann finiteness of tensor products of algebras, Comm. Algebra, 11, 6, 595-610 (1983) ·Zbl 0488.16015 ·doi:10.1080/00927878308822867
[21]Passman, Donald S., Infinite crossed products, Pure and Applied Mathematics 135, xii+468 pp. (1989), Academic Press, Inc., Boston, MA ·Zbl 0662.16001
[22]Passman, Donald S., The algebraic structure of group rings, Pure and Applied Mathematics, xiv+720 pp. (1977), Wiley-Interscience [John Wiley & Sons], New York-London-Sydney ·Zbl 0368.16003
[23]Pestov, Vladimir G., Hyperlinear and sofic groups: a brief guide, Bull. Symbolic Logic, 14, 4, 449-480 (2008) ·Zbl 1206.20048 ·doi:10.2178/bsl/1231081461
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp