Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Block-preconditioned Newton-Krylov solvers for fully coupled flow and geomechanics.(English)Zbl 1367.76034

Summary: The focus of this work is efficient solution methods for mixed finite element models of variably saturated fluid flow through deformable porous media. In particular, we examine preconditioning techniques to accelerate the convergence of implicit Newton-Krylov solvers. We highlight an approach in which preconditioners are built from block-factorizations of the coupled system. The key result of the work is the identification of effective preconditioners for the various sub-problems that appear within the block decomposition. We use numerical examples drawn from both linear and nonlinear hydromechanical models to test the robustness and scalability of the proposed methods. Results demonstrate that an algebraic multigrid variant of the block preconditioner leads to mesh-independent convergence, good parallel efficiency, and insensitivity to the material parameters of the medium.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
86A05 Hydrology, hydrography, oceanography
74L10 Soil and rock mechanics

Cite

References:

[1]Gawin, D., Baggio, P., Schrefler, B.A.: Coupled heat, water and gas flow in deformable porous media. Int. J. Numer. Methods Fluids 20, 969–987 (1995) ·Zbl 0854.76052 ·doi:10.1002/fld.1650200817
[2]Ehlers, W., Graf, T., Ammann, M.: Deformation and localization analysis of partially saturated soil. Comput. Methods Appl. Mech. Eng. 193(27–29), 2885–2910 (2004) ·Zbl 1067.74543 ·doi:10.1016/j.cma.2003.09.026
[3]Young, Y.L., White, J.A., Xiao, H., Borja, R.I.: Tsunami-induced liquefaction failure of coastal slopes. Acta Geotech. 4, 17–34 (2009) ·doi:10.1007/s11440-009-0083-6
[4]Borja, R.I., White, J.A.: Continuum deformation and stability analyses of a steep hillside slope under rainfall infiltration. Acta Geotech. 1–14 (2010)
[5]Ferronato, M., Bergamaschi, L., Gambolati, G.: Performance and robustness of block constraint preconditioners in finite element coupled consolidation problems. Int. J. Numer. Methods Eng. 81(3), 381–402 (2010) ·Zbl 1183.74271
[6]Wan, J.: Stabilized Finite Element Methods for Coupled Geomechanics and Multiphase Flow. Ph.D. thesis, Stanford University (2002)
[7]Minkoff, S.E., Stone, C.M., Bryant, S., Peszynska, M., Wheeler, M.F.: Coupled fluid flow and geomechanical deformation modeling. J. Pet. Sci. Eng. 38(1–2), 37–56 (2003) ·doi:10.1016/S0920-4105(03)00021-4
[8]Jha, B., Juanes, R.: A locally conservative finite element framework for the simulation of coupled flow and reservoir geomechanics. Acta Geotech. 2(3), 139–153 (2007) ·doi:10.1007/s11440-007-0033-0
[9]Hayashi, K., Willis-Richards, J., Hopkirk, R.J., Niibori, Y.: Numerical models of HDR geothermal reservoirs–a review of current thinking and progress. Geothermics 28(4–5), 507–518 (1999) ·doi:10.1016/S0375-6505(99)00026-7
[10]Johnson, J.W., Nitao, J.J., Morris, J.P.: Reactive transport modeling of cap rock integrity during natural and engineered CO2 storage. In: Benson, S. (ed.) CO2 Capture Project Summary, vol. 2. Elsevier, Amsterdam (2004)
[11]Rutqvist, J., Birkholzer, J.T., Tsang, C.F.: Coupled reservoir–geomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir–caprock systems. Int. J. Rock Mech. Min. Sci. 45(2), 132–143 (2008) ·doi:10.1016/j.ijrmms.2007.04.006
[12]Morris, J.P., Detwiler, R.L., Friedmann, S.J., Vorobiev, O.Y., Hao, Y.: The large-scale effects of multiple CO2 injection sites on formation stability. Energy Procedia 1(1), 1831–1837 (2009) ·doi:10.1016/j.egypro.2009.01.239
[13]Bramble, J.H., Pasciak, J.E.: A preconditioning technique for indefinite systems resulting from mixed approximation of elliptic problems. Math. Comput. 50(181), 1–17 (1988) ·Zbl 0643.65017 ·doi:10.1090/S0025-5718-1988-0917816-8
[14]Elman, H., Howle, V.E., Shadid, J., Shuttleworth, R., Tuminaro, R.: A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier–Stokes equations. J. Comput. Phys. 227(3), 1790–1808 (2008) ·Zbl 1290.76023 ·doi:10.1016/j.jcp.2007.09.026
[15]May, D.A., Moresi, L.: Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics. Phys. Earth Planet. Inter. 171(1–4), 33–47 (2008) ·doi:10.1016/j.pepi.2008.07.036
[16]Burstedde, C., Ghattas, O., Stadler, G., Tu, T., Wilcox, L.C.: Parallel scalable adjoint-based adaptive solution of variable-viscosity Stokes flow problems. Comput. Methods Appl. Mech. Eng. 198(21–26), 1691–1700 (2009) ·Zbl 1227.76027 ·doi:10.1016/j.cma.2008.12.015
[17]Toh, K.C., Phoon, K.K., Chan, S.H.: Block preconditioners for symmetric indefinite linear systems. Int. J. Numer. Methods Eng. 60, 1361–1381 (2004) ·Zbl 1065.65064 ·doi:10.1002/nme.982
[18]Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941) ·JFM 67.0837.01 ·doi:10.1063/1.1712886
[19]Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26(2), 182–185 (1955) ·Zbl 0067.23603 ·doi:10.1063/1.1721956
[20]Borja, R.I.: On the mechanical energy and effective stress in saturated and unsaturated porous continua. Int. J. Solids Struct. 43(6), 1764–1786 (2006) ·Zbl 1120.74446 ·doi:10.1016/j.ijsolstr.2005.04.045
[21]Terzaghi, K.: Theoretical Soil Mechanics. Wiley, New York (1943)
[22]Bishop, A.W.: The principle of effective stress. Tekn. Ukebl. 39, 859–863 (1959)
[23]Skempton, A.W.: Effective stress in soils, concrete and rocks. In: Pore Pressure and Suction in Soils, pp. 4–16. Butterworths, London (1961)
[24]Nur, A., Byerlee, J.D.: An exact effective stress law for elastic deformation of rock with fluids. J. Geophys. Res. 76, 6414–6419 (1971) ·doi:10.1029/JB076i026p06414
[25]Borja, R.I., Koliji, A.: On the effective stress in unsaturated porous continua with double porosity. J. Mech. Phys. Solids (2009). doi: 10.1016/j.jmps.2009.04.014 ·Zbl 1425.74310
[26]van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980) ·doi:10.2136/sssaj1980.03615995004400050002x
[27]Cryer, C.W.: A comparison of the three-dimensional consolidation theories of Biot and Terzaghi. Q. J. Mech. Appl. Math. 16(4), 401–412 (1963) ·Zbl 0121.21502 ·doi:10.1093/qjmam/16.4.401
[28]Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO Anal. Numer. 8, 129–151 (1974) ·Zbl 0338.90047
[29]Brezzi, F.: A discourse on the stability conditions for mixed finite element formulations. Comput. Methods. Appl. Mech. Eng. 82(1–3), 27–57 (1990) ·Zbl 0736.73062 ·doi:10.1016/0045-7825(90)90157-H
[30]Arnold, D.N.: Mixed finite element methods for elliptic problems. Comput. Methods Appl. Mech. Eng. 82, 281–300 (1990) ·Zbl 0729.73198 ·doi:10.1016/0045-7825(90)90168-L
[31]Murad, M.A., Loula, A.F.D.: On stability and convergence of finite element approximations of Biot’s consolidation problem. Int. J. Numer. Methods Eng. 37, 645–667 (1994) ·Zbl 0791.76047 ·doi:10.1002/nme.1620370407
[32]White, J.A., Borja, R.I.: Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients. Comput. Methods Appl. Mech. Eng. 197(49–50), 4353–4366 (2008) ·Zbl 1194.74480 ·doi:10.1016/j.cma.2008.05.015
[33]Pastor, M., Li, T., Liu, X., Zienkiewicz, O.C., Quecedo, M.: A fractional step algorithm allowing equal order of interpolation for coupled analysis of saturated soil problems. Mech. Cohes.-Frict. Mater. 5(7), 511–534 (2000) ·doi:10.1002/1099-1484(200010)5:7<511::AID-CFM87>3.0.CO;2-S
[34]Truty, A., Zimmermann, T.: Stabilized mixed finite element formulations for materially nonlinear partially saturated two-phase media. Comput. Methods Appl. Mech. Eng. 195, 1517–1546 (2006) ·Zbl 1116.74067 ·doi:10.1016/j.cma.2005.05.044
[35]Dohrmann, C.R., Bochev, P.B.: A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int. J. Numer. Methods Fluids 46, 183–201 (2004) ·Zbl 1060.76569 ·doi:10.1002/fld.752
[36]Bochev, P.B., Dohrmann, C.R.: A computational study of stabilized, low-order C 0 finite element approximations of Darcy equations. Comput. Mech. 38, 323–333 (2006) ·Zbl 1177.76191 ·doi:10.1007/s00466-006-0036-y
[37]Burman, E.: Pressure projection stabilizations for Galerkin approximations of Stokes’ and Darcy’s problem. Numer. Methods Partial Differ. Equ. 24(1), 127–143 (2007) ·Zbl 1139.76029 ·doi:10.1002/num.20243
[38]White, J.A.: Stabilized Finite Element Methods for Coupled Flow and Geomechanics. Ph.D. thesis, Stanford University, Stanford, CA (2009)
[39]Benzi, M., Golub, G.H., Liesen, J: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005) ·Zbl 1115.65034 ·doi:10.1017/S0962492904000212
[40]Verfürth, R.: Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO. Anal. Numér. 18(2), 175–182 (1984) ·Zbl 0557.76037
[41]Elman, H.C., Silvester, D.J., Wathen, A.J.: Iterative methods for problems in computational fluid dynamics. In: Iterative Methods in Scientific Computing, p. 271 (1997) ·Zbl 0957.76071
[42]Bangerth, W., Hartmann, R., Kanschat, G.: Deal.II–a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33(4), 24 (2007) ·Zbl 1365.65248 ·doi:10.1145/1268776.1268779
[43]Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. (in press, 2011) ·Zbl 1230.65106
[44]Bangerth, W., Burstedde, C., Heister, T., Kronbichler, M.: Algorithms and data structures for massively parallel generic adaptive finite element codes. ACM Trans. Math. Softw. (submitted, 2011) ·Zbl 1365.65247
[45]Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., et al.: An overview of the Trilinos project. ACM Trans. Math. Softw. 31(3), 397–423 (2005) ·Zbl 1136.65354 ·doi:10.1145/1089014.1089021
[46]Sala, M., Heroux, M.: Robust algebraic preconditioners with IFPACK 3.0. Technical Report SAND-0662, Sandia National Laboratories (2005)
[47]Gee, M.W., Siefert, C.M., Hu, J.J., Tuminaro, R.S., Sala, M.G.: ML 5.0 smoothed aggregation user’s guide. Technical Report SAND2006-2649, Sandia National Laboratories (2006)
[48]Eisenstat, S.C., Walker, H.F.: Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput. 17, 16–32 (1996) ·Zbl 0845.65021 ·doi:10.1137/0917003
[49]Verruijt, A.: Theory of Consolidation. In: An Introduction to Soil Dynamics, pp. 65–90 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp