[1] | Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Computational Mechanics, 10, 307-318, 1992 ·Zbl 0764.65068 |
[2] | Belytschko, T.; Lu, YY; Gu, L., Element‐free Galerkin methods, International Journal for Numerical Methods in Engineering, 37, 229-256, 1994 ·Zbl 0796.73077 |
[3] | Liu, WK; Jun, S.; Zhang, YF, Reproducing kernel particle methods, International Journal for Numerical Methods in Fluids, 20, 1081-1106, 1995 ·Zbl 0881.76072 |
[4] | Liu, WK; Li, S.; Belytschko, T., Moving least‐square reproducing kernel methods (I) methodology and convergence, Computer Methods in Applied Mechanics and Engineering, 143, 113-154, 1997 ·Zbl 0883.65088 |
[5] | Zhu, T.; Zhang, JD; Atluri, SN, A local boundary integral equation (LBIE) method in computational mechanics and a meshless discretization approach, Computational Mechanics, 21, 223-235, 1998 ·Zbl 0920.76054 |
[6] | Nguyen, VP; Rabczuk, T.; Bordas, S.; Duflot, M., Meshless methods: a review and computer implementation aspects, Mathematics and Computers in Simulation, 79, 763-813, 2008 ·Zbl 1152.74055 |
[7] | Li, H.; Mulay, SS, Meshless Methods and Their Numerical Properties, 2013, CRC press: Boca Raton, FL ·Zbl 1266.65001 |
[8] | Atluri, SN; Zhu, TL, A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Computational Mechanics, 22, 117-127, 1998 ·Zbl 0932.76067 |
[9] | Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Computer Methods in Applied Mechanics and Engineering, 139, 3-47, 1996 ·Zbl 0891.73075 |
[10] | Liu, WK; Chen, Y.; Jun, S.; Chen, JS; Belytschko, T.; Pan, C.; Uras, RA; Chang, CT, Overview and applications of the reproducing Kernel particle methods, Archives of Computational Methods in Engineering, 3, 3-80, 1996 |
[11] | Atluri, SN, Zhu TL. New concepts in meshless methods, International Journal for Numerical Methods in Engineering, 47, 537-556, 2000 ·Zbl 0988.74075 |
[12] | Atluri, SN; Zhu, TL, The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elastostatics, Computational Mechanics, 25, 169-179, 2000 ·Zbl 0976.74078 |
[13] | Lin, H.; Atluri, SN, Meshless local Petrov-Galerkin (MPLG) method for convection-diffusion problems, CMES‐Computer Modeling in Engineering and Sciences, 1, 45-60, 2000 |
[14] | Kim, HG; Atluri, SN, Arbitrary placement of secondary nodes and error control in the meshless local Petrov-Galerkin (MPLG) method, CMES‐Computer Modeling in Engineering and Sciences, 1, 11-32, 2000 ·Zbl 1147.65326 |
[15] | Batra, RC; Ching, HK, Analysis of elastodynamic deformation near a crack/notch tip by the meshless local Petrov-Galerkin (MLPG) method, CMES‐Computer Modeling in Engineering and Sciences, 3, 717-730, 2002 ·Zbl 1152.74343 |
[16] | Tang, Z.; Shen, S.; Atluri, SN, Analysis of materials with strain‐gradient effects: a meshless local Petrov-Galerkin (MLPG) approach with nodal displacements only, CMES‐Computer Modeling in Engineering and Sciences, 4, 177-196, 2003 ·Zbl 1148.74346 |
[17] | Johnson, JN; Owen, JM, A meshless local Petrov-Galerkin method for magnetic diffusion in non‐magnetic conductors, CMES‐Computer Modeling in Engineering and Sciences, 22, 165-188, 2007 ·Zbl 1184.65102 |
[18] | Ferronato, M.; Mazzia, A.; Pini, G.; Gambolati, G., A meshless method for axi‐symmetric poroelastic simulations: numerical study, International Journal for Numerical Methods in Engineering, 70, 1346-1375, 2007 ·Zbl 1194.74523 |
[19] | Deeks, AJ; Augarde, CE, A hybrid meshless local Petrov-Galerkin method for unbounded domains, Computer Methods in Applied Mechanics and Engineering, 196, 843-852, 2007 ·Zbl 1121.74471 |
[20] | Sladek, J.; Sladek, V.; Solek, P.; Zhang, C., Fracture analysis in continuously nonhomogeneous magneto‐electro‐elastic solids under a thermal load by the MLPG, International Journal of Solid and Structures, 47, 1381-1391, 2010 ·Zbl 1193.74171 |
[21] | Avila, R.; Atluri, SN, Numerical solution of non‐steady flows, around surfaces in spatially and temporally arbitrary motions, by using the MLPG method, CMES‐Computer Modeling in Engineering and Sciences, 54, 15-64, 2010 ·Zbl 1231.76067 |
[22] | Atluri, SN; Shen, S., The meshless local Petrov-Galerkin (MLPG) method: a simple and less‐costly alternative to the finite element and boundary element methods, CMES‐Computer Modeling in Engineering and Sciences, 1, 11-51, 2000 ·Zbl 0996.65116 |
[23] | Atluri, SN; Liu, HT; Han, ZD, Meshless local Petrov-Galerkin (MLPG) mixed collocation method for elasticity problems, CMES‐Computer Modeling in Engineering and Sciences, 14, 141-152, 2006 ·Zbl 1357.74079 |
[24] | Atluri, SN; Liu, HT; Han, ZD, Meshless local Petrov-Galerkin (MLPG) mixed finite difference method for solid mechanics, CMES‐Computer Modeling in Engineering and Sciences, 15, 15-64, 2006 ·Zbl 1357.74074 |
[25] | Breitkopf, P.; Rassineux, A.; Touzot, G.; Villon, P., Explicit form and efficient computation of MLS shape functions and their derivatives, International Journal for Numerical Methods in Engineering, 48, 451-466, 2000 ·Zbl 0965.65015 |
[26] | Mazzia, A.; Ferronato, M.; Pini, G.; Gambolati, G., A comparison of numerical integration rules for the meshless local Petrov-Galerkin method, Numerical Algorithms, 45, 61-74, 2007 ·Zbl 1125.65104 |
[27] | Belytschko, T.; Organ, D.; Krongauz, Y., A coupled finite element‐element‐free Galerkin method, Computational Mechanics, 17, 186-195, 1995 ·Zbl 0840.73058 |
[28] | Hegen, D., Element‐free Galerkin methods in combination with finite element approaches, Computer Methods in Applied Mechanics and Engineering, 135, 143-166, 1996 ·Zbl 0893.73063 |
[29] | Rabczuk, T.; Belytschko, T., Application of particle methods to static fracture of reinforced concrete structures, International Journal of Fracture, 137, 19-49, 2006 ·Zbl 1197.74175 |
[30] | Fernandez‐Mendez, S.; Huerta, A., Enrichment and coupling of the finite element and meshless methods, International Journal for Numerical Methods in Engineering, 48, 1615-1636, 2000 ·Zbl 0976.74067 |
[31] | Huerta, A.; Fernandez‐Mendez, S.; Liu, WK, A comparison of two formulations to blend finite elements and mesh‐free methods, Computer Methods in Applied Mechanics and Engineering, 193, 1105-1117, 2004 ·Zbl 1059.65104 |
[32] | Xiao, Q.; Dhanasekar, M., Coupling of FE and EFG using collocation approach, Advances in Engineering Software, 33, 507-515, 2002 ·Zbl 1024.65113 |
[33] | Ullah, Z.; Coombs, WM; Augarde, CE, An adaptive finite element/meshless coupled method based on local maximum entropy shape functions for linear and nonlinear problems, Computer Methods in Applied Mechanics and Engineering, 267, 111-132, 2013 ·Zbl 1286.74111 |
[34] | Chen, T.; Raju, IS, A coupled finite element and meshless local Petrov-Galerkin method for two‐dimensional potential problems, Computer Methods in Applied Mechanics and Engineering, 192, 4533-4550, 2003 ·Zbl 1037.65115 |
[35] | Liu, WK; Uras, RA; Chen, Y., Enrichment of the finite element method with reproducing Kernel particle method, Journal of Applied Mechanics, 64, 861-870, 1997 ·Zbl 0920.73366 |
[36] | Ferronato, M.; Mazzia, A.; Pini, G., A finite element enrichment technique by the meshless local Petrov-Galerkin method, CMES‐Computer Modeling in Engineering and Sciences, 62, 205-222, 2010 ·Zbl 1231.65210 |
[37] | Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Mathematics of Computation, 37, 141-158, 1981 ·Zbl 0469.41005 |
[38] | Fernandez‐Mendez, S.; Huerta, A., Imposing essential boundary conditions in mesh‐free methods, Computer Methods in Applied Mechanics and Engineering, 193, 1257-1275, 2004 ·Zbl 1060.74665 |
[39] | Atluri, SN; Kim, HG; Cho, JY, A critical assessment of the truly meshless local Petrov-Galerkin (MLPG) and local boundary integral equation (LBIE) methods, Computational Mechanics, 24, 348-372, 1999 ·Zbl 0977.74593 |
[40] | Zhu, T.; Atluri, SN, A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method, Computational Mechanics, 21, 211-222, 1998 ·Zbl 0947.74080 |
[41] | Arnold, DN; Brezzi, F.; Cockburn, B.; Marini, LD, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM Journal on Numerical Analysis, 39, 1749-1779, 2002 ·Zbl 1008.65080 |
[42] | Cordes, LW; Moran, B., Treatment of material discontinuity in the element‐free Galerkin method, Computer Methods in Applied Mechanics and Engineering, 139, 75-89, 1996 ·Zbl 0918.73331 |
[43] | Li, Q.; Shen, S.; Han, HD; Atluri, SN, Application of meshless local Petrov-Galerkin (MLPG) to problems with singularities and material discontinuities in 3‐D elasticity, CMES‐Computer Modeling in Engineering and Sciences, 4, 571-585, 2003 ·Zbl 1108.74387 |
[44] | Mazzia, A.; Pini, G., Product Gauss quadrature rules vs. cubature rules in the meshless local Petrov-Galerkin method, Journal of Complexity, 26, 82-101, 2010 ·Zbl 1182.65171 |
[45] | Trobec, R.; Šterk, M.; Robič, B., Computational complexity and parallelization of the meshless local Petrov-Galerkin method, Computers and Structures, 87, 81-90, 2009 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.