Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A direct method of moving planes for the fractional Laplacian.(English)Zbl 1362.35320

Summary: In this paper, we develop a directmethod of moving planes for the fractional Laplacian. Instead of using the conventional extension method introduced by Caffarelli and Silvestre, we work directly on the non-local operator. Using the integral defining the fractional Laplacian, by an elementary approach, we first obtain the key ingredients needed in themethod of moving planes either in a bounded domain or in the whole space, such asstrong maximum principles for anti-symmetric functions,narrow region principles, anddecay at infinity. Then, using simple examples, semilinear equations involving the fractional Laplacian, we illustrate how this newmethod of moving planes can be employed to obtain symmetry and non-existence of positive solutions.
We firmly believe that the ideas and methods introduced here can be conveniently applied to study a variety of nonlocal problems with more general operators and more general nonlinearities.

MSC:

35R11 Fractional partial differential equations
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35B50 Maximum principles in context of PDEs
35B07 Axially symmetric solutions to PDEs

Cite

References:

[1]Brandle, C.; Colorado, E.; de Pablo, A.; Sanchez, U., A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143, 39-71 (2013) ·Zbl 1290.35304
[2]Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32, 1245-1260 (2007) ·Zbl 1143.26002
[3]Caffarelli, L.; Silvestre, L., Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62, 597-638 (2009) ·Zbl 1170.45006
[4]Chen, W.; Fang, Y.; Yang, R., Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274, 167-198 (2015) ·Zbl 1372.35332
[5]Chen, W.; Li, C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63, 615-622 (1991) ·Zbl 0768.35025
[6]Chen, W.; Li, C., Methods on Nonlinear Elliptic Equations, AIMS Book Series, vol. 4 (2010) ·Zbl 1214.35023
[7]Chen, W.; Li, C.; Li, G., Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differential Equations (2016), accepted
[8]Chen, W.; Li, C.; Ou, B., Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst., 12, 347-354 (2005) ·Zbl 1081.45003
[9]Chen, W.; Li, C.; Ou, B., Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59, 330-343 (2006) ·Zbl 1093.45001
[10]Chen, W.; Zhu, J., Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 260, 4758-4785 (2016) ·Zbl 1336.35089
[11]Fang, Y.; Chen, W., A Liouville type theorem for poly-harmonic Dirichlet problem in a half space, Adv. Math., 229, 2835-2867 (2012) ·Zbl 1250.35051
[12]Frank, R. L.; Lenzmann, E., Uniqueness and nondegeneracy of ground states for \((- \triangle)^s Q + Q - Q^{\alpha + 1} = 0\) in \(R\), Acta Math., 210, 261-318 (2013) ·Zbl 1307.35315
[13]Frank, R. L.; Lenzmann, E., On ground state for the \(L^2\)-critical boson star equation (2010)
[14]Frank, R. L.; Lenzmann, E.; Silvestre, L., Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69, 1671-1726 (2016) ·Zbl 1365.35206
[15]Frank, R. L.; Lieb, E., Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality, Calc. Var. Partial Differential Equations, 39, 85-99 (2010) ·Zbl 1204.39024
[16]Gidas, B.; Ni, W.; Nirenberg, L., Symmetry and the related properties via the maximum principle, Comm. Math. Phys., 68, 209-243 (1979) ·Zbl 0425.35020
[17]Han, X.; Lu, G.; Zhu, J., Characterization of balls in terms of Bessel-potential integral equation, J. Differential Equations, 252, 1589-1602 (2012) ·Zbl 1229.31005
[18]Hang, F., On the integral systems related to Hardy-Littlewood-Sobolev inequality, Math. Res. Lett., 14, 373-383 (2007) ·Zbl 1144.26031
[19]Hang, F.; Wang, X.; Yan, X., An integral equation in conformal geometry, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26, 1-21 (2009) ·Zbl 1154.45004
[20]Jarohs, S.; Weth, T., Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Ann. Mat. Pura Appl., 195, 273-291 (2016) ·Zbl 1346.35010
[21]Jin, T.; Li, Y. Y.; Xiong, J., On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions, J. Eur. Math. Soc. (JEMS), 16, 1111-1171 (2014) ·Zbl 1300.53041
[22]Jin, T.; Xiong, J., A fractional Yemabe flow and some applications, J. Reine Angew. Math., 696, 187-223 (2014) ·Zbl 1305.53067
[23]Lei, Y., Asymptotic properties of positive solutions of the Hardy-Sobolev type equations, J. Differential Equations, 254, 1774-1799 (2013) ·Zbl 1261.35023
[24]Lei, Y.; Li, C.; Ma, C., Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system of integral equations, Calc. Var. Partial Differential Equations, 45, 43-61 (2012) ·Zbl 1257.45005
[25]Lu, G.; Zhu, J., The axial symmetry and regularity of solutions to an integral equation in a half space, Pacific J. Math., 253, 455-473 (2011) ·Zbl 1239.45005
[26]Lu, G.; Zhu, J., Symmetry and regularity of extremals of an integral equation related to the Hardy-Sobolev inequality, Calc. Var. Partial Differential Equations, 42, 563-577 (2011) ·Zbl 1231.35290
[27]Lu, G.; Zhu, J., An overdetermined problem in Riesz-potential and fractional Laplacian, Nonlinear Anal., 75, 3036-3048 (2012) ·Zbl 1236.31004
[28]Ma, L.; Chen, D., A Liouville type theorem for an integral system, Commun. Pure Appl. Anal., 5, 855-859 (2006) ·Zbl 1134.45007
[29]Ma, L.; Zhao, L., Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195, 455-467 (2010) ·Zbl 1185.35260
[30]Silvestre, L., Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60, 67-112 (2007) ·Zbl 1141.49035
[31]Zhuo, R.; Chen, W.; Cui, X.; Yuan, Z., Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst., 36, 1125-1141 (2016) ·Zbl 1322.31007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp