[1] | Brandle, C.; Colorado, E.; de Pablo, A.; Sanchez, U., A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143, 39-71 (2013) ·Zbl 1290.35304 |
[2] | Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32, 1245-1260 (2007) ·Zbl 1143.26002 |
[3] | Caffarelli, L.; Silvestre, L., Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62, 597-638 (2009) ·Zbl 1170.45006 |
[4] | Chen, W.; Fang, Y.; Yang, R., Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274, 167-198 (2015) ·Zbl 1372.35332 |
[5] | Chen, W.; Li, C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63, 615-622 (1991) ·Zbl 0768.35025 |
[6] | Chen, W.; Li, C., Methods on Nonlinear Elliptic Equations, AIMS Book Series, vol. 4 (2010) ·Zbl 1214.35023 |
[7] | Chen, W.; Li, C.; Li, G., Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differential Equations (2016), accepted |
[8] | Chen, W.; Li, C.; Ou, B., Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst., 12, 347-354 (2005) ·Zbl 1081.45003 |
[9] | Chen, W.; Li, C.; Ou, B., Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59, 330-343 (2006) ·Zbl 1093.45001 |
[10] | Chen, W.; Zhu, J., Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 260, 4758-4785 (2016) ·Zbl 1336.35089 |
[11] | Fang, Y.; Chen, W., A Liouville type theorem for poly-harmonic Dirichlet problem in a half space, Adv. Math., 229, 2835-2867 (2012) ·Zbl 1250.35051 |
[12] | Frank, R. L.; Lenzmann, E., Uniqueness and nondegeneracy of ground states for \((- \triangle)^s Q + Q - Q^{\alpha + 1} = 0\) in \(R\), Acta Math., 210, 261-318 (2013) ·Zbl 1307.35315 |
[13] | Frank, R. L.; Lenzmann, E., On ground state for the \(L^2\)-critical boson star equation (2010) |
[14] | Frank, R. L.; Lenzmann, E.; Silvestre, L., Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69, 1671-1726 (2016) ·Zbl 1365.35206 |
[15] | Frank, R. L.; Lieb, E., Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality, Calc. Var. Partial Differential Equations, 39, 85-99 (2010) ·Zbl 1204.39024 |
[16] | Gidas, B.; Ni, W.; Nirenberg, L., Symmetry and the related properties via the maximum principle, Comm. Math. Phys., 68, 209-243 (1979) ·Zbl 0425.35020 |
[17] | Han, X.; Lu, G.; Zhu, J., Characterization of balls in terms of Bessel-potential integral equation, J. Differential Equations, 252, 1589-1602 (2012) ·Zbl 1229.31005 |
[18] | Hang, F., On the integral systems related to Hardy-Littlewood-Sobolev inequality, Math. Res. Lett., 14, 373-383 (2007) ·Zbl 1144.26031 |
[19] | Hang, F.; Wang, X.; Yan, X., An integral equation in conformal geometry, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26, 1-21 (2009) ·Zbl 1154.45004 |
[20] | Jarohs, S.; Weth, T., Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Ann. Mat. Pura Appl., 195, 273-291 (2016) ·Zbl 1346.35010 |
[21] | Jin, T.; Li, Y. Y.; Xiong, J., On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions, J. Eur. Math. Soc. (JEMS), 16, 1111-1171 (2014) ·Zbl 1300.53041 |
[22] | Jin, T.; Xiong, J., A fractional Yemabe flow and some applications, J. Reine Angew. Math., 696, 187-223 (2014) ·Zbl 1305.53067 |
[23] | Lei, Y., Asymptotic properties of positive solutions of the Hardy-Sobolev type equations, J. Differential Equations, 254, 1774-1799 (2013) ·Zbl 1261.35023 |
[24] | Lei, Y.; Li, C.; Ma, C., Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system of integral equations, Calc. Var. Partial Differential Equations, 45, 43-61 (2012) ·Zbl 1257.45005 |
[25] | Lu, G.; Zhu, J., The axial symmetry and regularity of solutions to an integral equation in a half space, Pacific J. Math., 253, 455-473 (2011) ·Zbl 1239.45005 |
[26] | Lu, G.; Zhu, J., Symmetry and regularity of extremals of an integral equation related to the Hardy-Sobolev inequality, Calc. Var. Partial Differential Equations, 42, 563-577 (2011) ·Zbl 1231.35290 |
[27] | Lu, G.; Zhu, J., An overdetermined problem in Riesz-potential and fractional Laplacian, Nonlinear Anal., 75, 3036-3048 (2012) ·Zbl 1236.31004 |
[28] | Ma, L.; Chen, D., A Liouville type theorem for an integral system, Commun. Pure Appl. Anal., 5, 855-859 (2006) ·Zbl 1134.45007 |
[29] | Ma, L.; Zhao, L., Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195, 455-467 (2010) ·Zbl 1185.35260 |
[30] | Silvestre, L., Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60, 67-112 (2007) ·Zbl 1141.49035 |
[31] | Zhuo, R.; Chen, W.; Cui, X.; Yuan, Z., Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst., 36, 1125-1141 (2016) ·Zbl 1322.31007 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.