[1] | Akemann, G., Burda, Z.: Universal microscopic correlation functions for products of independent Ginibre matrices. J. Phys. A 45, 465201 (2012) ·Zbl 1261.15041 ·doi:10.1088/1751-8113/45/46/465201 |
[2] | Akemann, G., Burda, Z., Kieburg, M.: Universal distribution of Lyapunov exponents for products of Ginibre matrices. Available at arXiv:1406.0803 ·Zbl 1327.60021 |
[3] | Akemann, G., Ipsen, J.R., Kieburg, M.: Products of rectangular random matrices: singular values and progressive scattering. Phys. Rev. E 88, 052118 (2013) ·doi:10.1103/PhysRevE.88.052118 |
[4] | Akemann, G., Ipsen, J.R., Strahov, E.: Permanental processes from products of complex and quaternionic induced Ginibre ensembles. Available at arXiv:1404.4583 ·Zbl 1304.15025 |
[5] | Akemann, G., Kieburg, M., Wei, L.: Singular value correlation functions for products of Wishart random matrices. J. Phys. A 46, 275205 (2013) ·Zbl 1271.15022 ·doi:10.1088/1751-8113/46/27/275205 |
[6] | Akemann, G., Strahov, E.: Hole probabilities and overcrowding estimates for products of complex Gaussian matrices. J. Stat. Phys. 151(6), 987-1003 (2013) ·Zbl 1314.15026 ·doi:10.1007/s10955-013-0750-8 |
[7] | Anderson, G.: Convergence of the largest singular value of a polynomial in independent Wigner matrices. Ann. Probab. 41(3B), 2103-2181 (2013) ·Zbl 1282.60007 ·doi:10.1214/11-AOP739 |
[8] | Bai, Z.D.: Circular law. Ann. Probab. 25, 494-529 (1997) ·Zbl 0871.62018 ·doi:10.1214/aop/1024404298 |
[9] | Bai, Z.D., Silverstein, J.: Spectral Analysis of Large Dimensional Random Matrices. Mathematics Monograph Series 2. Science Press, Beijing (2006) ·Zbl 1196.60002 |
[10] | Bordenave, C.: On the spectrum of sum and product of non-hermitian random matrices. Electron. Commun. Probab. 16, 104-113 (2011) ·Zbl 1227.60010 ·doi:10.1214/ECP.v16-1606 |
[11] | Bordenave, C., Chafaï, D.: Around the circular law. Probab. Surv. 9, 1-89 (2012) ·Zbl 1243.15022 ·doi:10.1214/11-PS183 |
[12] | Biane, P., Lehner, F.: Computation of some examples of Brown’s spectral measure in free probability. Colloq. Math. 90(2), 181-211 (2001) ·Zbl 0988.22004 ·doi:10.4064/cm90-2-3 |
[13] | Burda, Z., Janik, R.A., Waclaw, B.: Spectrum of the product of independent random Gaussian matrices. Phys. Rev. E 81, 041132 (2010) ·doi:10.1103/PhysRevE.81.041132 |
[14] | Burda, Z., Jarosz, A., Livan, G., Nowak, M.A., Swiech, A.: Eigenvalues and singular values of products of rectangular Gaussian random matrices. Phys. Rev. E 82, 061114 (2010) ·Zbl 1371.60014 ·doi:10.1103/PhysRevE.82.061114 |
[15] | Burda, Z.: Free products of large random matrices—a short review of recent developments. Available at arXiv:1309.2568 ·Zbl 1185.15034 |
[16] | Burkholder, D.L.: Distribution function inequalities for martingales. Ann. Probab. 1, 19-42 (1973) ·Zbl 0301.60035 ·doi:10.1214/aop/1176997023 |
[17] | Edelman, A.: The Probability that a random real Gaussian matrix has \[k\] k real eigenvalues, related distributions, and the circular Law. J. Multivar. Anal. 60, 203-232 (1997) ·Zbl 0886.15024 ·doi:10.1006/jmva.1996.1653 |
[18] | Forrester, P.J.: Lyapunov exponents for products of complex Gaussian random matrices. Available at arXiv:1206.2001 ·Zbl 1272.82020 |
[19] | Forrester, P.J.: Probability of all eigenvalues real for products of standard Gaussian matrices. Available at arXiv:1309.7736 ·Zbl 1290.15024 |
[20] | Ginibre, J.: Statistical ensembles of complex, quaternion and real matrices. J. Math. Phys. 6, 440-449 (1965) ·Zbl 0127.39304 ·doi:10.1063/1.1704292 |
[21] | Girko, V.L.: Circular law. Theory Probab. Appl. 29, 694-706 (1984) ·doi:10.1137/1129095 |
[22] | Girko, V.L.: The strong circular law, twenty years later. II. Random Oper. Stoch. Equ. 12(3), 255-312 (2004) ·Zbl 1065.60026 ·doi:10.1515/1569397042222477 |
[23] | Girko, V.L.: Elliptic law. Theory Probab. Appl. 30(4), 677-690 (1985) ·Zbl 0658.62023 ·doi:10.1137/1130089 |
[24] | Girko, V.L.: The elliptic law: ten years later I. Random Oper. Stoch. Equ. 3(3), 257-302 (1995) ·Zbl 0831.60022 ·doi:10.1515/rose.1995.3.3.257 |
[25] | Goldsheid, I., Khoruzhenko, B.A.: The Thouless formula for random non-Hermitian Jacobi matrices. Isr. J. Math. 148, 331-346 (2005) ·Zbl 1185.15034 ·doi:10.1007/BF02775442 |
[26] | Götze, F., Naumov, A., Tikhomirov, T.: On one generalization of the elliptic law for random matrices. Available at arXiv:1404.7013 ·Zbl 1371.60019 |
[27] | Götze, F., Tikhomirov, T.: The circular law for random matrices. Ann. Probab. 38(4), 1444-1491 (2010) ·Zbl 1203.60010 ·doi:10.1214/09-AOP522 |
[28] | Götze, F., Tikhomirov, T.: On the asymptotic spectrum of products of independent random matrices. Available at arXiv:1012.2710 ·Zbl 1517.60011 |
[29] | Haagerup, U., Larsen, F.: Brown’s spectral distribution measure for R-diagonal elements in finite von Neumann algebras. J. Funct. Anal. 176(2), 331-367 (2000) ·Zbl 0984.46042 ·doi:10.1006/jfan.2000.3610 |
[30] | Haagerup, U., Thorbjørnsen, S.: A new application of random matrices: \[Ext(C_{red}^*(F_2))\] Ext(Cred∗(F2)) is not a group. Ann. Math. (2) 162, 711-755 (2005) ·Zbl 1103.46032 ·doi:10.4007/annals.2005.162.711 |
[31] | Helton, J., Far, R., Speicher, R.: Operator-valued semicircular elements: solving a quadratic matrix equation with positivity constraints. Int. Math. Res. Not. (2007) ·Zbl 1139.15006 |
[32] | Hiai, F., Petz, D.: The Semicircle Law, Free Random Variables and Entropy, Mathematical Surveys and Monographs, 77. American Mathematical Society, Providence, RI (2000) ·Zbl 0955.46037 |
[33] | Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1991) ·Zbl 0729.15001 ·doi:10.1017/CBO9780511840371 |
[34] | Larsen, F.: Powers of R-diagonal elements. J. Oper. Theory 47, 197-212 (2002) ·Zbl 1029.46103 |
[35] | Mehta, M.L.: Random Matrices and the Statistical Theory of Energy Levels. Academic Press, New York (1967) ·Zbl 0925.60011 |
[36] | Mehta, M.L.: Random Matrices, 3rd edn. Elsevier/Academic Press, Amsterdam (2004) ·Zbl 1107.15019 |
[37] | Naumov, A.: Elliptic law for real random matrices. Available at arXiv:1201.1639 [math.PR] ·Zbl 0658.62023 |
[38] | Nguyen, H.: On the least singular value of random symmetric matrices. Electron. J. Probab. 17(53), 1-19 (2012) ·Zbl 1251.15014 ·doi:10.1080/00207217.2011.582449 |
[39] | Nguyen, H.: personal communications, September 2014 ·Zbl 0085.13203 |
[40] | Nguyen, H., O’Rourke, S.: The elliptic law. Available at arXiv:1208.5883 [math.PR] ·Zbl 1325.15030 |
[41] | Nguyen, H., O’Rourke, S.: On the concentration of random multilinear forms and the universality of random block matrices. Available at arXiv:1309.4815 ·Zbl 1323.15022 |
[42] | Nica A., Speicher, R.: R-diagonal pairs—a common approach to Haar unitaries and circular elements. In: D. Voiculescu (ed) Fields Institute Communications, vol. 12, pp. 149-188, AMS (1997) ·Zbl 0889.46053 |
[43] | O’Rourke, S., Renfrew, D.: Low rank perturbations of large elliptic random matrices, submitted. Available at arXiv:1309.5326 ·Zbl 1315.60008 |
[44] | O’Rourke, S., Soshnikov, A.: Products of independent non-Hermitian random matrices. Electron. J. Probab. 16(81), 2219-2245 (2011) ·Zbl 1244.60011 |
[45] | Pan, G., Zhou, W.: Circular law, extreme singular values and potential theory. J. Multivar. Anal. 101, 645-656 (2010) ·Zbl 1203.60011 ·doi:10.1016/j.jmva.2009.08.005 |
[46] | Tao, T., Vu, V.: Random matrices: the circular law. Commun. Contemp. Math. 10, 261-307 (2008) ·Zbl 1156.15010 ·doi:10.1142/S0219199708002788 |
[47] | Tao, T., Vu, V.: From the Littlewood-Offord problem to the circular law: universality of the spectral distribution of random matrices. Bull. Am. Math. Soc. (N.S.) 46(3), 377-396 (2009) ·Zbl 1168.15018 ·doi:10.1090/S0273-0979-09-01252-X |
[48] | Tao, T., Vu, V.: Random matrices: universality of ESDs and the circular law. Ann. Probab. 38(5), 2023-2065 (2010) ·Zbl 1203.15025 ·doi:10.1214/10-AOP534 |
[49] | Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics. Acta Math. 206, 127-204 (2011) ·Zbl 1217.15043 ·doi:10.1007/s11511-011-0061-3 |
[50] | Wigner, E.P.: On the distributions of the roots of certain symmetric matrices. Ann. Math. 67, 325-327 (1958) ·Zbl 0085.13203 ·doi:10.2307/1970008 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.