Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Gromov-Witten/pairs correspondence for the quintic 3-fold.(English)Zbl 1360.14134

The main result of the paper under review establishes a Gromov-Witten/Pairs (GW/P) correspondence for Fano or Calabi-Yau 3-folds that are complete intersections in products of projective spaces.
Let \(X \subset \mathbb P^{n_1}\times \cdots \mathbb P^{n_m}\) be a Fano or Calabi-Yau complete intersection and \(\gamma_i\in H^{2*}(X,\mathbb Q)\) be even classes, and \(\beta\in H_2(X,\mathbb Z)\) with \(d_\beta=\int_\beta c_1(X)\), then GW/P correspondence can be expressed as follows:
Firstly, the generating series of class \(\beta\) stable pair invariants with descendents is a rational function, i.e., \[Z_P \left(X;q \mid \tau_{\alpha_1-1}(\gamma_1)\cdots \tau_{\alpha_\ell-1}(\gamma_\ell)\right)_\beta\in\mathbb Q(q)\] and secondly there is a correspondence \[\begin{aligned} (-q)^{-d_\beta/2}Z_P \bigg(X;q \mid \tau_{\alpha_1-1}(\gamma_1)&\cdots \tau_{\alpha_\ell-1}(\gamma_\ell)\bigg)_\beta \\&=(-iu)^{d_\beta}Z'_{GW} \bigg(X;q \mid \overline{\tau_{\alpha_1-1}(\gamma_1)\cdots \tau_{\alpha_\ell-1}(\gamma_\ell)}\bigg)_\beta \end{aligned}\] under the change of variable \(-q=e^{iu}\). Here, the right hand side is the generating series of class \(\beta\) Gromov-Witten invariants with descendants (of possibly disconnected domain curves). The over line in the right hand side is a correspondence rule defined by means of a universal correspondence matrix indexed by partitions of positive size and constructed from the capped descendent vertex in an earlier work of the authors of this paper. In the case where all descendents are primary or stationary, the over line correspondence is the identity and one recovers the standard GW/P correspondence conjectured earlier. The proof of the main theorem is by means of the degeneration scheme established by Maulik-Pandharipande. To run this scheme the authors of this paper prove GW/P correspondences for relative and descendent insertions in several simpler geometries. Moreover, the degeneration scheme requires the study of relative theories of \(\mathbb P^1\)-bundles over surfaces \(S\) where \(S\) is either(i) a toric surface, (ii) a \(K3\) surface,(iii) or a \(\mathbb P^1\)-bundle over a higher genus curve \(C\).The authors prove the descendent correspondences for the relative surface geometries (i)-(iii) among which the most difficult ones to establish are the surface geometries (iii).
Pandharipande-Thomas’ recent proof of the full Katz-Klemm-Vafa conjecture for the Gromov-Witten theory of \(K3\) surfaces uses the GW/P correspondences for nontoric hypersurface Calabi-Yau 3-folds established in this paper.

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
14H60 Vector bundles on curves and their moduli

Cite

References:

[1]Aganagic, Mina; Klemm, Albrecht; Mari{\~n}o, Marcos; Vafa, Cumrun, The topological vertex, Comm. Math. Phys., 254, 2, 425\textendash 478 pp. (2005) ·Zbl 1114.81076 ·doi:10.1007/s00220-004-1162-z
[2]Behrend, K., Gromov-Witten invariants in algebraic geometry, Invent. Math., 127, 3, 601\textendash 617 pp. (1997) ·Zbl 0909.14007 ·doi:10.1007/s002220050132
[3]Behrend, K.; Fantechi, B., The intrinsic normal cone, Invent. Math., 128, 1, 45\textendash 88 pp. (1997) ·Zbl 0909.14006 ·doi:10.1007/s002220050136
[4]Bridgeland, Tom, Hall algebras and curve-counting invariants, J. Amer. Math. Soc., 24, 4, 969\textendash 998 pp. (2011) ·Zbl 1234.14039 ·doi:10.1090/S0894-0347-2011-00701-7
[5]Bryan, J.; Pandharipande, R., The local Gromov-Witten theory of curves, J. Amer. Math. Soc., 21, 101\textendash 136 pp. (2008) ·Zbl 1126.14062
[6]Gopakumar, R.; Vafa, C., M-theory and topological strings I and II
[7]Graber, T.; Pandharipande, R., Localization of virtual classes, Invent. Math., 135, 2, 487\textendash 518 pp. (1999) ·Zbl 0953.14035 ·doi:10.1007/s002220050293
[8]Gross, Mark; Siebert, Bernd, Logarithmic Gromov-Witten invariants, J. Amer. Math. Soc., 26, 2, 451\textendash 510 pp. (2013) ·Zbl 1281.14044 ·doi:10.1090/S0894-0347-2012-00757-7
[9]Ionel, Eleny-Nicoleta; Parker, Thomas H., Relative Gromov-Witten invariants, Ann. of Math. (2), 157, 1, 45\textendash 96 pp. (2003) ·Zbl 1039.53101 ·doi:10.4007/annals.2003.157.45
[10]Ionel, E.; Parker, T., The Gopakumar-Vafa formula for symplectic manifolds ·Zbl 1459.53078
[11]Klemm, A.; Mari\~no, M., Counting BPS states on the Enriques Calabi-Yau ·Zbl 1175.81171
[12]Li, An-Min; Ruan, Yongbin, Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, Invent. Math., 145, 1, 151\textendash 218 pp. (2001) ·Zbl 1062.53073 ·doi:10.1007/s002220100146
[13]Li, Jun, A degeneration formula of GW-invariants, J. Differential Geom., 60, 2, 199\textendash 293 pp. (2002) ·Zbl 1063.14069
[14]Li, Jun; Tian, Gang, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc., 11, 1, 119\textendash 174 pp. (1998) ·Zbl 0912.14004 ·doi:10.1090/S0894-0347-98-00250-1
[15]Li, Jun; Wu, Baosen, Good degeneration of Quot-schemes and coherent systems, Comm. Anal. Geom., 23, 4, 841\textendash 921 pp. (2015) ·Zbl 1349.14014
[16]Maulik, Davesh, Gromov-Witten theory of \(\mathcal{A}_n\)-resolutions, Geom. Topol., 13, 3, 1729\textendash 1773 pp. (2009) ·Zbl 1184.14085 ·doi:10.2140/gt.2009.13.1729
[17]Maulik, D.; Nekrasov, N.; Okounkov, A.; Pandharipande, R., Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math., 142, 5, 1263\textendash 1285 pp. (2006) ·Zbl 1108.14046 ·doi:10.1112/S0010437X06002302
[18]Maulik, D.; Nekrasov, N.; Okounkov, A.; Pandharipande, R., Gromov-Witten theory and Donaldson-Thomas theory. II, Compos. Math., 142, 5, 1286\textendash 1304 pp. (2006) ·Zbl 1108.14047 ·doi:10.1112/S0010437X06002314
[19]Maulik, Davesh; Oblomkov, Alexei, Quantum cohomology of the Hilbert scheme of points on \(\mathcal{A}_n\)-resolutions, J. Amer. Math. Soc., 22, 4, 1055\textendash 1091 pp. (2009) ·Zbl 1215.14055 ·doi:10.1090/S0894-0347-09-00632-8
[20]Maulik, Davesh; Oblomkov, Alexei, Donaldson-Thomas theory of \({\mathcal{A}}_n\times P^1\), Compos. Math., 145, 5, 1249\textendash 1276 pp. (2009) ·Zbl 1188.14036 ·doi:10.1112/S0010437X09003972
[21]Maulik, D.; Oblomkov, A.; Okounkov, A.; Pandharipande, R., Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds, Invent. Math., 186, 2, 435\textendash 479 pp. (2011) ·Zbl 1232.14039 ·doi:10.1007/s00222-011-0322-y
[22]Maulik, D.; Pandharipande, R., A topological view of Gromov-Witten theory, Topology, 45, 5, 887\textendash 918 pp. (2006) ·Zbl 1112.14065 ·doi:10.1016/j.top.2006.06.002
[23]Maulik, D.; Pandharipande, R., New calculations in Gromov-Witten theory, Pure Appl. Math. Q., 4, 2, Special Issue: In honor of Fedor Bogomolov., 469\textendash 500 pp. (2008) ·Zbl 1156.14042 ·doi:10.4310/PAMQ.2008.v4.n2.a7
[24]Maulik, D.; Pandharipande, R.; Thomas, R. P., Curves on \(K3\) surfaces and modular forms, J. Topol., 3, 4, 937\textendash 996 pp. (2010) ·Zbl 1207.14058 ·doi:10.1112/jtopol/jtq030
[25]Oblomkov, A.; Okounkov, A.; Pandharipande, R.
[26]Okounkov, A.; Pandharipande, R., Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. (2), 163, 2, 517\textendash 560 pp. (2006) ·Zbl 1105.14076 ·doi:10.4007/annals.2006.163.517
[27]Okounkov, A.; Pandharipande, R., Virasoro constraints for target curves, Invent. Math., 163, 1, 47\textendash 108 pp. (2006) ·Zbl 1140.14047 ·doi:10.1007/s00222-005-0455-y
[28]Okounkov, A.; Pandharipande, R., Quantum cohomology of the Hilbert scheme of points in the plane, Invent. Math., 179, 3, 523\textendash 557 pp. (2010) ·Zbl 1198.14054 ·doi:10.1007/s00222-009-0223-5
[29]Okounkov, A.; Pandharipande, R., The local Donaldson-Thomas theory of curves, Geom. Topol., 14, 3, 1503\textendash 1567 pp. (2010) ·Zbl 1205.14067 ·doi:10.2140/gt.2010.14.1503
[30]Pandharipande, R.; Pixton, A., Descendents on local curves: rationality, Compos. Math., 149, 1, 81\textendash 124 pp. (2013) ·Zbl 1376.14059 ·doi:10.1112/S0010437X12000498
[31]Pandharipande, Rahul; Pixton, Aaron, Descendent theory for stable pairs on toric 3-folds, J. Math. Soc. Japan, 65, 4, 1337\textendash 1372 pp. (2013) ·Zbl 1285.14061 ·doi:10.2969/jmsj/06541337
[32]Pandharipande, R.; Pixton, A., Descendents on local curves: stationary theory. Geometry and arithmetic, EMS Ser. Congr. Rep., 283\textendash 307 pp. (2012), Eur. Math. Soc., Z\"urich ·Zbl 1317.14010 ·doi:10.4171/119-1/17
[33]Pandharipande, Rahul; Pixton, Aaron, Gromov-Witten/pairs descendent correspondence for toric 3-folds, Geom. Topol., 18, 5, 2747\textendash 2821 pp. (2014) ·Zbl 1342.14114 ·doi:10.2140/gt.2014.18.2747
[34]Pandharipande, R.; Thomas, R. P., Curve counting via stable pairs in the derived category, Invent. Math., 178, 2, 407\textendash 447 pp. (2009) ·Zbl 1204.14026 ·doi:10.1007/s00222-009-0203-9
[35]Pandharipande, Rahul; Thomas, Richard P., The 3-fold vertex via stable pairs, Geom. Topol., 13, 4, 1835\textendash 1876 pp. (2009) ·Zbl 1195.14073 ·doi:10.2140/gt.2009.13.1835
[36]Pandharipande, R.; Thomas, R. P., Stable pairs and BPS invariants, J. Amer. Math. Soc., 23, 1, 267\textendash 297 pp. (2010) ·Zbl 1250.14035 ·doi:10.1090/S0894-0347-09-00646-8
[37]Pandharipande, R.; Thomas, R. P., The Katz-Klemm-Vafa conjecture for \(K3\) surfaces ·Zbl 1401.14223
[38]Pandharipande, R.; Thomas, R. P., 13/2 ways of counting curves. Moduli spaces, London Math. Soc. Lecture Note Ser. 411, 282\textendash 333 pp. (2014), Cambridge Univ. Press, Cambridge ·Zbl 1310.14031
[39]Setayesh, Iman, Relative Hilbert scheme of points, 50 pp. (2011), ProQuest LLC, Ann Arbor, MI ·Zbl 1354.14009
[40]Toda, Yukinobu, Curve counting theories via stable objects I. DT/PT correspondence, J. Amer. Math. Soc., 23, 4, 1119\textendash 1157 pp. (2010) ·Zbl 1207.14020 ·doi:10.1090/S0894-0347-10-00670-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp