[1] | Aganagic, Mina; Klemm, Albrecht; Mari{\~n}o, Marcos; Vafa, Cumrun, The topological vertex, Comm. Math. Phys., 254, 2, 425\textendash 478 pp. (2005) ·Zbl 1114.81076 ·doi:10.1007/s00220-004-1162-z |
[2] | Behrend, K., Gromov-Witten invariants in algebraic geometry, Invent. Math., 127, 3, 601\textendash 617 pp. (1997) ·Zbl 0909.14007 ·doi:10.1007/s002220050132 |
[3] | Behrend, K.; Fantechi, B., The intrinsic normal cone, Invent. Math., 128, 1, 45\textendash 88 pp. (1997) ·Zbl 0909.14006 ·doi:10.1007/s002220050136 |
[4] | Bridgeland, Tom, Hall algebras and curve-counting invariants, J. Amer. Math. Soc., 24, 4, 969\textendash 998 pp. (2011) ·Zbl 1234.14039 ·doi:10.1090/S0894-0347-2011-00701-7 |
[5] | Bryan, J.; Pandharipande, R., The local Gromov-Witten theory of curves, J. Amer. Math. Soc., 21, 101\textendash 136 pp. (2008) ·Zbl 1126.14062 |
[6] | Gopakumar, R.; Vafa, C., M-theory and topological strings I and II |
[7] | Graber, T.; Pandharipande, R., Localization of virtual classes, Invent. Math., 135, 2, 487\textendash 518 pp. (1999) ·Zbl 0953.14035 ·doi:10.1007/s002220050293 |
[8] | Gross, Mark; Siebert, Bernd, Logarithmic Gromov-Witten invariants, J. Amer. Math. Soc., 26, 2, 451\textendash 510 pp. (2013) ·Zbl 1281.14044 ·doi:10.1090/S0894-0347-2012-00757-7 |
[9] | Ionel, Eleny-Nicoleta; Parker, Thomas H., Relative Gromov-Witten invariants, Ann. of Math. (2), 157, 1, 45\textendash 96 pp. (2003) ·Zbl 1039.53101 ·doi:10.4007/annals.2003.157.45 |
[10] | Ionel, E.; Parker, T., The Gopakumar-Vafa formula for symplectic manifolds ·Zbl 1459.53078 |
[11] | Klemm, A.; Mari\~no, M., Counting BPS states on the Enriques Calabi-Yau ·Zbl 1175.81171 |
[12] | Li, An-Min; Ruan, Yongbin, Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, Invent. Math., 145, 1, 151\textendash 218 pp. (2001) ·Zbl 1062.53073 ·doi:10.1007/s002220100146 |
[13] | Li, Jun, A degeneration formula of GW-invariants, J. Differential Geom., 60, 2, 199\textendash 293 pp. (2002) ·Zbl 1063.14069 |
[14] | Li, Jun; Tian, Gang, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc., 11, 1, 119\textendash 174 pp. (1998) ·Zbl 0912.14004 ·doi:10.1090/S0894-0347-98-00250-1 |
[15] | Li, Jun; Wu, Baosen, Good degeneration of Quot-schemes and coherent systems, Comm. Anal. Geom., 23, 4, 841\textendash 921 pp. (2015) ·Zbl 1349.14014 |
[16] | Maulik, Davesh, Gromov-Witten theory of \(\mathcal{A}_n\)-resolutions, Geom. Topol., 13, 3, 1729\textendash 1773 pp. (2009) ·Zbl 1184.14085 ·doi:10.2140/gt.2009.13.1729 |
[17] | Maulik, D.; Nekrasov, N.; Okounkov, A.; Pandharipande, R., Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math., 142, 5, 1263\textendash 1285 pp. (2006) ·Zbl 1108.14046 ·doi:10.1112/S0010437X06002302 |
[18] | Maulik, D.; Nekrasov, N.; Okounkov, A.; Pandharipande, R., Gromov-Witten theory and Donaldson-Thomas theory. II, Compos. Math., 142, 5, 1286\textendash 1304 pp. (2006) ·Zbl 1108.14047 ·doi:10.1112/S0010437X06002314 |
[19] | Maulik, Davesh; Oblomkov, Alexei, Quantum cohomology of the Hilbert scheme of points on \(\mathcal{A}_n\)-resolutions, J. Amer. Math. Soc., 22, 4, 1055\textendash 1091 pp. (2009) ·Zbl 1215.14055 ·doi:10.1090/S0894-0347-09-00632-8 |
[20] | Maulik, Davesh; Oblomkov, Alexei, Donaldson-Thomas theory of \({\mathcal{A}}_n\times P^1\), Compos. Math., 145, 5, 1249\textendash 1276 pp. (2009) ·Zbl 1188.14036 ·doi:10.1112/S0010437X09003972 |
[21] | Maulik, D.; Oblomkov, A.; Okounkov, A.; Pandharipande, R., Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds, Invent. Math., 186, 2, 435\textendash 479 pp. (2011) ·Zbl 1232.14039 ·doi:10.1007/s00222-011-0322-y |
[22] | Maulik, D.; Pandharipande, R., A topological view of Gromov-Witten theory, Topology, 45, 5, 887\textendash 918 pp. (2006) ·Zbl 1112.14065 ·doi:10.1016/j.top.2006.06.002 |
[23] | Maulik, D.; Pandharipande, R., New calculations in Gromov-Witten theory, Pure Appl. Math. Q., 4, 2, Special Issue: In honor of Fedor Bogomolov., 469\textendash 500 pp. (2008) ·Zbl 1156.14042 ·doi:10.4310/PAMQ.2008.v4.n2.a7 |
[24] | Maulik, D.; Pandharipande, R.; Thomas, R. P., Curves on \(K3\) surfaces and modular forms, J. Topol., 3, 4, 937\textendash 996 pp. (2010) ·Zbl 1207.14058 ·doi:10.1112/jtopol/jtq030 |
[25] | Oblomkov, A.; Okounkov, A.; Pandharipande, R. |
[26] | Okounkov, A.; Pandharipande, R., Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. (2), 163, 2, 517\textendash 560 pp. (2006) ·Zbl 1105.14076 ·doi:10.4007/annals.2006.163.517 |
[27] | Okounkov, A.; Pandharipande, R., Virasoro constraints for target curves, Invent. Math., 163, 1, 47\textendash 108 pp. (2006) ·Zbl 1140.14047 ·doi:10.1007/s00222-005-0455-y |
[28] | Okounkov, A.; Pandharipande, R., Quantum cohomology of the Hilbert scheme of points in the plane, Invent. Math., 179, 3, 523\textendash 557 pp. (2010) ·Zbl 1198.14054 ·doi:10.1007/s00222-009-0223-5 |
[29] | Okounkov, A.; Pandharipande, R., The local Donaldson-Thomas theory of curves, Geom. Topol., 14, 3, 1503\textendash 1567 pp. (2010) ·Zbl 1205.14067 ·doi:10.2140/gt.2010.14.1503 |
[30] | Pandharipande, R.; Pixton, A., Descendents on local curves: rationality, Compos. Math., 149, 1, 81\textendash 124 pp. (2013) ·Zbl 1376.14059 ·doi:10.1112/S0010437X12000498 |
[31] | Pandharipande, Rahul; Pixton, Aaron, Descendent theory for stable pairs on toric 3-folds, J. Math. Soc. Japan, 65, 4, 1337\textendash 1372 pp. (2013) ·Zbl 1285.14061 ·doi:10.2969/jmsj/06541337 |
[32] | Pandharipande, R.; Pixton, A., Descendents on local curves: stationary theory. Geometry and arithmetic, EMS Ser. Congr. Rep., 283\textendash 307 pp. (2012), Eur. Math. Soc., Z\"urich ·Zbl 1317.14010 ·doi:10.4171/119-1/17 |
[33] | Pandharipande, Rahul; Pixton, Aaron, Gromov-Witten/pairs descendent correspondence for toric 3-folds, Geom. Topol., 18, 5, 2747\textendash 2821 pp. (2014) ·Zbl 1342.14114 ·doi:10.2140/gt.2014.18.2747 |
[34] | Pandharipande, R.; Thomas, R. P., Curve counting via stable pairs in the derived category, Invent. Math., 178, 2, 407\textendash 447 pp. (2009) ·Zbl 1204.14026 ·doi:10.1007/s00222-009-0203-9 |
[35] | Pandharipande, Rahul; Thomas, Richard P., The 3-fold vertex via stable pairs, Geom. Topol., 13, 4, 1835\textendash 1876 pp. (2009) ·Zbl 1195.14073 ·doi:10.2140/gt.2009.13.1835 |
[36] | Pandharipande, R.; Thomas, R. P., Stable pairs and BPS invariants, J. Amer. Math. Soc., 23, 1, 267\textendash 297 pp. (2010) ·Zbl 1250.14035 ·doi:10.1090/S0894-0347-09-00646-8 |
[37] | Pandharipande, R.; Thomas, R. P., The Katz-Klemm-Vafa conjecture for \(K3\) surfaces ·Zbl 1401.14223 |
[38] | Pandharipande, R.; Thomas, R. P., 13/2 ways of counting curves. Moduli spaces, London Math. Soc. Lecture Note Ser. 411, 282\textendash 333 pp. (2014), Cambridge Univ. Press, Cambridge ·Zbl 1310.14031 |
[39] | Setayesh, Iman, Relative Hilbert scheme of points, 50 pp. (2011), ProQuest LLC, Ann Arbor, MI ·Zbl 1354.14009 |
[40] | Toda, Yukinobu, Curve counting theories via stable objects I. DT/PT correspondence, J. Amer. Math. Soc., 23, 4, 1119\textendash 1157 pp. (2010) ·Zbl 1207.14020 ·doi:10.1090/S0894-0347-10-00670-3 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.