Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The Kumaraswamy Marshal-Olkin family of distributions.(English)Zbl 1359.60028

Summary: We introduce a new family of continuous distributions called the Kumaraswamy Marshal-Olkin generalized family of distributions. We study some mathematical properties of this family. Its density function is symmetrical, left-skewed, right-skewed and reversed-J shaped, and has constant, increasing, decreasing, upside-down bathtub, bathtub and S-shaped hazard rate. We present some special models and investigate the asymptotics and shapes of the family. We derive a power series for the quantile function and obtain explicit expressions for the moments, generating function, mean deviations, two types of entropies and order statistics. Some useful characterizations of the family are also proposed. The method of maximum likelihood is used to estimate the model parameters. We illustrate the importance of the family by means of two applications to real data sets.

MSC:

60E05 Probability distributions: general theory
60E15 Inequalities; stochastic orderings
62E15 Exact distribution theory in statistics
62N05 Reliability and life testing

Software:

Ox;R

Cite

References:

[1]Eugene, N.; Lee, C.; Famoye, F., Beta-normal distribution and its applications, Commun. Stat. Theory Methods, 31, 497-512 (2002) ·Zbl 1009.62516
[2]Jones, M. C., Families of distributions arising from the distributions of order statistics, Test, 13, 1-43 (2004) ·Zbl 1110.62012
[3]Cordeiro, G. M.; de Castro, M., A new family of generalized distributions, J. Stat. Comput. Simul., 81, 883-893 (2011) ·Zbl 1219.62022
[4]Alexander, C.; Cordeiro, G. M.; Ortega, E. M.M.; Sarabia, J. M., Generalized beta-generated distributions, Comput. Stat. Data Anal., 56, 1880-1897 (2012) ·Zbl 1245.60015
[5]Zografos, K.; Balakrishnan, N., On families of beta- and generalized gamma-generated distributions and associated inference, Stat. Methodol., 6, 344-362 (2009) ·Zbl 1463.62023
[6]Amini, M.; MirMostafaee, S. M.T. K.; Ahmadi, J., Log-gamma-generated families of distributions, Statistics, 48, 913-932 (2014) ·Zbl 1326.62025
[7]Ristić, M. M.; Balakrishnan, N., The gamma-exponentiated exponential distribution, J. Stat. Comput. Simul., 82, 1191-1206 (2012) ·Zbl 1297.62033
[8]Torabi, H.; Montazari, N. H., The gamma-uniform distribution and its application, Kybernetika, 48, 16-30 (2012) ·Zbl 1243.93123
[9]Torabi, H.; Montazari, N. H., The logistic-uniform distribution and its application, Commun. Stat. Simul. Comput., 43, 2551-2569 (2014) ·Zbl 1462.62110
[10]Alzaatreh, A.; Lee, C.; Famoye, F., A new method for generating families of continuous distributions, Metron, 71, 63-79 (2013) ·Zbl 1302.62026
[11]Alzaatreh, A.; Lee, C.; Famoye, F., On the discrete analogues of contineous distributions, Stat. Methodol., 9, 589-603 (2012) ·Zbl 1365.62059
[12]Alzaghal, A.; Famoye, F.; Lee, C., Exponentiated T-X family of distributions with some applications, Int. J. Probab. Statist., 2, 31-49 (2013)
[13]Cordeiro, G. M.; Ortega, E. M.M.; da Cunha, D. C.C., The exponentiated generalized class of distributions, J. Data Sci., 11, 1-27 (2013)
[14]Bourguignon, M.; Silva, R. B.; Cordeiro, G. M., The Weibull-G family of probability distributions, J. Data Sci., 12, 53-68 (2014)
[15]Cordeiro, G. M.; Alizadeh, M.; Ortega, E. M.M., The exponentiated half-logistic family of distributions: properties and applications, J. Probab. Statist. (2014), 21 p. Art.ID 864396 ·Zbl 1307.62030
[16]Aljarrah, M. A.; Lee, C.; Famoye, F., On generating T-X family of distributions distributions using quantile functions, J. Stat. Dist. Appl., 1 (2014), Art. 2 ·Zbl 1357.62069
[17]Alzaatreh, A.; Lee, C.; Famoye, F., T-normal family of distributions: a new approach to generalize the normal distribution, J. Stat. Dist. Appl., 1 (2014), Art. 16 ·Zbl 1349.60009
[18]Cordeiro, G. M.; Ortega, E. M.M.; Popović, B. V.; Pescim, R. R., The Lomax generator of distributions: properties, minification process and regression model, Appl. Math. Comput., 247, 465-486 (2014) ·Zbl 1338.60031
[19]Tahir, M. H.; Cordeiro, G. M.; Alzaatreh, A.; Mansoor, M.; Zubair, M., The Logistic-X family of distributions and its applications, Commun. Stat. Theory Methods (2015), in press ·Zbl 1349.60017
[20]Tahir, M. H.; Zubair, M.; Mansoor, M.; Cordeiro, G. M.; Alizadeh, M.; Hamedani, G. G., A new Weibull-G family of distributions, Hacet. J. Math. Stat. (2015), in press ·Zbl 1359.60028
[21]Marshall, A. N.; Olkin, I., A new method for adding a parameter to a family of distributions with applications to the exponential and Weibull families, Biometrika, 84, 641-652 (1997) ·Zbl 0888.62012
[22]Cordeiro, G. M.; Alizadeh, M.; Dias, C. R.B.; Marinho, P. R.D., Exponentiated Marshall-Olkin family of distributions, Appl. Math. Model. (2014), in preparation ·Zbl 1367.62036
[23]Gupta, R. C.; Gupta, P. I.; Gupta, R. D., Modeling failure time data by Lehmann alternatives, Commun. Stat. Theory Methods, 27, 887-904 (1998) ·Zbl 0900.62534
[24]Gupta, R. C.; Gupta, R. D., Proportional reversed hazard rate model and its applications, J. Stat. Plann. Infer., 137, 3525-3536 (2007) ·Zbl 1119.62098
[25]Gradshteyn, I. S.; Ryzhik, I. M., Table of Integrals, Series, and Products (2000), Academic Press: Academic Press San Diego ·Zbl 0981.65001
[26]Nadarajah, S.; Kotz, S., The exponentiated type distributions, Acta Appl. Math., 92, 97-111 (2006) ·Zbl 1128.62015
[27]Rényi, A., On Measures of Entropy and Information. On Measures of Entropy and Information, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability-I (1961), University of California Press: University of California Press Berkeley, pp. 547-561 ·Zbl 0106.33001
[28]Shannon, C. E., A mathematical theory of communication, Bell Sys. Tech. J., 27, 379-432 (1948) ·Zbl 1154.94303
[29]Nadarajah, S.; Cordeiro, G. M.; Ortega, E. M.M., The Zografos-Balakrishnan-G family of distributions: mathematical properties and applications, Commun. Stat. Theory Methods, 44, 186-215 (2015) ·Zbl 1314.62042
[30]Glänzel, W., A characterization theorem based on truncated moments and its application to some distribution families, (Puri, M. L.; Révész, P.; Wertz, W.; Bauer, P.; Konecny, F., Mathematical Statistics and Probability Theory, vol. B (1987), D. Reidel Publishing Company), 75-84 ·Zbl 0631.62020
[31]Hamedani, G. G.; Javanshiri, Z.; Maadooliat, M.; Yazdani, A., Remarks on characterizations of Malinowska and Szynal, Appl. Math. Comput., 246, 377-388 (2014) ·Zbl 1338.62045
[33]Bekker, A.; Roux, J.; Mostert, P., A generalization of the compound Rayleigh distribution: using a Bayesian methods on cancer survival times, Commun. Stat. Theory Methods, 29, 1419-1433 (2000) ·Zbl 0992.62100
[35]Famoye, F.; Lee, C.; Olumolade, O., The beta-Weibull distribution, J. Stat. Theory Appl., 4, 121-136 (2005)
[36]Cordeiro, G. M.; Ortega, E. M.M.; Nadarajah, S., The Kumaraswamy Weibull distribution with application to failure data, J. Franklin Inst., 347, 1174-1197 (2010)
[37]Mudholkar, G. S.; Srivastava, D. K., Exponentiated Weibull family for analyzing bathtub failure data, IEEE Trans. Reliab., 42, 299-302 (1993) ·Zbl 0800.62609
[38]Cordeiro, G. M.; Lemonte, A. J., On the Marshall-Olkin extended Weibull distribution, Stat. Papers, 54, 333-353 (2013) ·Zbl 1365.62054
[39]Barreto-Souza, W.; Cordeiro, G. M.; Simas, A., Some results for beta Fréchet distribution, Commun. Stat. Theory Methods, 40, 798-811 (2011) ·Zbl 1216.62018
[41]Krishna, E.; Jose, K. K.; Ristić, M. M., Applications of Marshall-Olkin Fréchet distribution, Commun. Stat. Theory Methods, 42, 76-89 (2013) ·Zbl 1270.60024
[42]Chen, G.; Balakrishnan, N., A general purpose approximate goodness-of-fit test, J. Qual. Tech., 27, 154-161 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp