[1] | Eugene, N.; Lee, C.; Famoye, F., Beta-normal distribution and its applications, Commun. Stat. Theory Methods, 31, 497-512 (2002) ·Zbl 1009.62516 |
[2] | Jones, M. C., Families of distributions arising from the distributions of order statistics, Test, 13, 1-43 (2004) ·Zbl 1110.62012 |
[3] | Cordeiro, G. M.; de Castro, M., A new family of generalized distributions, J. Stat. Comput. Simul., 81, 883-893 (2011) ·Zbl 1219.62022 |
[4] | Alexander, C.; Cordeiro, G. M.; Ortega, E. M.M.; Sarabia, J. M., Generalized beta-generated distributions, Comput. Stat. Data Anal., 56, 1880-1897 (2012) ·Zbl 1245.60015 |
[5] | Zografos, K.; Balakrishnan, N., On families of beta- and generalized gamma-generated distributions and associated inference, Stat. Methodol., 6, 344-362 (2009) ·Zbl 1463.62023 |
[6] | Amini, M.; MirMostafaee, S. M.T. K.; Ahmadi, J., Log-gamma-generated families of distributions, Statistics, 48, 913-932 (2014) ·Zbl 1326.62025 |
[7] | Ristić, M. M.; Balakrishnan, N., The gamma-exponentiated exponential distribution, J. Stat. Comput. Simul., 82, 1191-1206 (2012) ·Zbl 1297.62033 |
[8] | Torabi, H.; Montazari, N. H., The gamma-uniform distribution and its application, Kybernetika, 48, 16-30 (2012) ·Zbl 1243.93123 |
[9] | Torabi, H.; Montazari, N. H., The logistic-uniform distribution and its application, Commun. Stat. Simul. Comput., 43, 2551-2569 (2014) ·Zbl 1462.62110 |
[10] | Alzaatreh, A.; Lee, C.; Famoye, F., A new method for generating families of continuous distributions, Metron, 71, 63-79 (2013) ·Zbl 1302.62026 |
[11] | Alzaatreh, A.; Lee, C.; Famoye, F., On the discrete analogues of contineous distributions, Stat. Methodol., 9, 589-603 (2012) ·Zbl 1365.62059 |
[12] | Alzaghal, A.; Famoye, F.; Lee, C., Exponentiated T-X family of distributions with some applications, Int. J. Probab. Statist., 2, 31-49 (2013) |
[13] | Cordeiro, G. M.; Ortega, E. M.M.; da Cunha, D. C.C., The exponentiated generalized class of distributions, J. Data Sci., 11, 1-27 (2013) |
[14] | Bourguignon, M.; Silva, R. B.; Cordeiro, G. M., The Weibull-G family of probability distributions, J. Data Sci., 12, 53-68 (2014) |
[15] | Cordeiro, G. M.; Alizadeh, M.; Ortega, E. M.M., The exponentiated half-logistic family of distributions: properties and applications, J. Probab. Statist. (2014), 21 p. Art.ID 864396 ·Zbl 1307.62030 |
[16] | Aljarrah, M. A.; Lee, C.; Famoye, F., On generating T-X family of distributions distributions using quantile functions, J. Stat. Dist. Appl., 1 (2014), Art. 2 ·Zbl 1357.62069 |
[17] | Alzaatreh, A.; Lee, C.; Famoye, F., T-normal family of distributions: a new approach to generalize the normal distribution, J. Stat. Dist. Appl., 1 (2014), Art. 16 ·Zbl 1349.60009 |
[18] | Cordeiro, G. M.; Ortega, E. M.M.; Popović, B. V.; Pescim, R. R., The Lomax generator of distributions: properties, minification process and regression model, Appl. Math. Comput., 247, 465-486 (2014) ·Zbl 1338.60031 |
[19] | Tahir, M. H.; Cordeiro, G. M.; Alzaatreh, A.; Mansoor, M.; Zubair, M., The Logistic-X family of distributions and its applications, Commun. Stat. Theory Methods (2015), in press ·Zbl 1349.60017 |
[20] | Tahir, M. H.; Zubair, M.; Mansoor, M.; Cordeiro, G. M.; Alizadeh, M.; Hamedani, G. G., A new Weibull-G family of distributions, Hacet. J. Math. Stat. (2015), in press ·Zbl 1359.60028 |
[21] | Marshall, A. N.; Olkin, I., A new method for adding a parameter to a family of distributions with applications to the exponential and Weibull families, Biometrika, 84, 641-652 (1997) ·Zbl 0888.62012 |
[22] | Cordeiro, G. M.; Alizadeh, M.; Dias, C. R.B.; Marinho, P. R.D., Exponentiated Marshall-Olkin family of distributions, Appl. Math. Model. (2014), in preparation ·Zbl 1367.62036 |
[23] | Gupta, R. C.; Gupta, P. I.; Gupta, R. D., Modeling failure time data by Lehmann alternatives, Commun. Stat. Theory Methods, 27, 887-904 (1998) ·Zbl 0900.62534 |
[24] | Gupta, R. C.; Gupta, R. D., Proportional reversed hazard rate model and its applications, J. Stat. Plann. Infer., 137, 3525-3536 (2007) ·Zbl 1119.62098 |
[25] | Gradshteyn, I. S.; Ryzhik, I. M., Table of Integrals, Series, and Products (2000), Academic Press: Academic Press San Diego ·Zbl 0981.65001 |
[26] | Nadarajah, S.; Kotz, S., The exponentiated type distributions, Acta Appl. Math., 92, 97-111 (2006) ·Zbl 1128.62015 |
[27] | Rényi, A., On Measures of Entropy and Information. On Measures of Entropy and Information, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability-I (1961), University of California Press: University of California Press Berkeley, pp. 547-561 ·Zbl 0106.33001 |
[28] | Shannon, C. E., A mathematical theory of communication, Bell Sys. Tech. J., 27, 379-432 (1948) ·Zbl 1154.94303 |
[29] | Nadarajah, S.; Cordeiro, G. M.; Ortega, E. M.M., The Zografos-Balakrishnan-G family of distributions: mathematical properties and applications, Commun. Stat. Theory Methods, 44, 186-215 (2015) ·Zbl 1314.62042 |
[30] | Glänzel, W., A characterization theorem based on truncated moments and its application to some distribution families, (Puri, M. L.; Révész, P.; Wertz, W.; Bauer, P.; Konecny, F., Mathematical Statistics and Probability Theory, vol. B (1987), D. Reidel Publishing Company), 75-84 ·Zbl 0631.62020 |
[31] | Hamedani, G. G.; Javanshiri, Z.; Maadooliat, M.; Yazdani, A., Remarks on characterizations of Malinowska and Szynal, Appl. Math. Comput., 246, 377-388 (2014) ·Zbl 1338.62045 |
[33] | Bekker, A.; Roux, J.; Mostert, P., A generalization of the compound Rayleigh distribution: using a Bayesian methods on cancer survival times, Commun. Stat. Theory Methods, 29, 1419-1433 (2000) ·Zbl 0992.62100 |
[35] | Famoye, F.; Lee, C.; Olumolade, O., The beta-Weibull distribution, J. Stat. Theory Appl., 4, 121-136 (2005) |
[36] | Cordeiro, G. M.; Ortega, E. M.M.; Nadarajah, S., The Kumaraswamy Weibull distribution with application to failure data, J. Franklin Inst., 347, 1174-1197 (2010) |
[37] | Mudholkar, G. S.; Srivastava, D. K., Exponentiated Weibull family for analyzing bathtub failure data, IEEE Trans. Reliab., 42, 299-302 (1993) ·Zbl 0800.62609 |
[38] | Cordeiro, G. M.; Lemonte, A. J., On the Marshall-Olkin extended Weibull distribution, Stat. Papers, 54, 333-353 (2013) ·Zbl 1365.62054 |
[39] | Barreto-Souza, W.; Cordeiro, G. M.; Simas, A., Some results for beta Fréchet distribution, Commun. Stat. Theory Methods, 40, 798-811 (2011) ·Zbl 1216.62018 |
[41] | Krishna, E.; Jose, K. K.; Ristić, M. M., Applications of Marshall-Olkin Fréchet distribution, Commun. Stat. Theory Methods, 42, 76-89 (2013) ·Zbl 1270.60024 |
[42] | Chen, G.; Balakrishnan, N., A general purpose approximate goodness-of-fit test, J. Qual. Tech., 27, 154-161 (1995) |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.