Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Fine properties and a notion of quasicontinuity for BV functions on metric spaces.(English. French summary)Zbl 1359.30055

Summary: On a metric space equipped with a doubling measure supporting a Poincaré inequality, we show that given a BV function, discarding a set of small 1-capacity makes the function continuous outside its jump set and “one-sidedly” continuous in its jump set. We show that such a property implies, in particular, that the measure theoretic boundary of a set of finite perimeter separates the measure theoretic interior of the set from its measure theoretic exterior, both in the sense of the subspace topology outside sets of small 1-capacity, and in the sense of 1-almost every curve.

MSC:

30L99 Analysis on metric spaces

Cite

References:

[1]Ambrosio, L., Fine properties of sets of finite perimeter in doubling metric measure spaces, Calculus of variations, nonsmooth analysis and related topics, Set-Valued Anal., 10, 2-3, 111-128 (2002) ·Zbl 1037.28002
[2]Ambrosio, L.; Colombo, M.; DiMarino, S., Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope, preprint ·Zbl 1370.46018
[3]Ambrosio, L.; Fusco, N.; Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems, Oxf. Math. Monogr. (2000), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press New York ·Zbl 0957.49001
[4]Ambrosio, L.; Miranda, M.; Pallara, D., Special functions of bounded variation in doubling metric measure spaces, (Calculus of Variations: Topics from the Mathematical Heritage of E. De Giorgi. Calculus of Variations: Topics from the Mathematical Heritage of E. De Giorgi, Quad. Mat., vol. 14 (2004), Dept. Math., Seconda Univ. Napoli: Dept. Math., Seconda Univ. Napoli Caserta), 1-45 ·Zbl 1089.49039
[5]Ambrosio, L.; Tilli, P., Topics on Analysis in Metric Spaces, Oxford Lecture Ser. Math. Appl., vol. 25 (2004), Oxford University Press: Oxford University Press Oxford, viii+133 pp ·Zbl 1080.28001
[6]Björn, A.; Björn, J., Nonlinear Potential Theory on Metric Spaces, EMS Tracts Math., vol. 17 (2011), European Mathematical Society (EMS): European Mathematical Society (EMS) Zürich, xii+403 pp ·Zbl 1231.31001
[7]Björn, A.; Björn, J.; Shanmugalingam, N., Quasicontinuity of Newton-Sobolev functions and density of Lipschitz functions on metric spaces, Houst. J. Math., 34, 4, 1197-1211 (2008) ·Zbl 1170.46032
[8]Björn, A.; Björn, J.; Shanmugalingam, N., Sobolev extensions of Hölder continuous and characteristic functions on metric spaces, Can. J. Math., 59, 6, 1135-1153 (2007) ·Zbl 1137.46018
[9]Bourgain, J.; Korobkov, M.; Kristensen, J., On the Morse-Sard property and level sets of \(W^{n, 1}\) Sobolev functions on \(R^n\), J. Reine Angew. Math., 700, 93-112 (2015) ·Zbl 1322.46022
[10]Cheeger, J., Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9, 3, 428-517 (1999) ·Zbl 0942.58018
[11]Coifman, R. R.; Weiss, G., Analyse harmonique non-commutative sur certaines espaces homogènes. Étude de certaines intégrales singulières, Lect. Notes Math., vol. 242 (1971), Springer-Verlag: Springer-Verlag Berlin/New York, v+160 pp ·Zbl 0224.43006
[12]Evans, L. C.; Gariepy, R. F., Measure Theory and Fine Properties of Functions, Stud. Adv. Math. (1992), CRC Press: CRC Press Boca Raton ·Zbl 0626.49007
[13]Federer, H., Geometric Measure Theory, Grundlehren Math. Wiss., vol. 153 (1969), Springer-Verlag New York Inc.: Springer-Verlag New York Inc. New York, xiv+676 pp ·Zbl 0176.00801
[14]Giusti, E., Minimal Surfaces and Functions of Bounded Variation (1984), Birkhäuser ·Zbl 0545.49018
[15]Hajłasz, P., Sobolev spaces on metric-measure spaces, (Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces. Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces, Paris, 2002. Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces. Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces, Paris, 2002, Contemp. Math., vol. 338 (2003), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 173-218 ·Zbl 1048.46033
[16]Hakkarainen, H.; Kinnunen, J., The BV-capacity in metric spaces, Manuscr. Math., 132, 1-2, 51-73 (2010) ·Zbl 1194.28001
[18]Hakkarainen, H.; Shanmugalingam, N., Comparisons of relative BV-capacities and Sobolev capacity in metric spaces, Nonlinear Anal., 74, 16, 5525-5543 (2011) ·Zbl 1248.28002
[19]Heikkinen, T.; Koskela, P.; Tuominen, H., Sobolev-type spaces from generalized Poincaré inequalities, Stud. Math., 181, 1, 1-16 (2007) ·Zbl 1129.46026
[20]Heinonen, J.; Koskela, P.; Shanmugalingam, N.; Tyson, J., Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients, New Math. Monogr., vol. 27, i-xi+448 (2015), Cambridge University Press ·Zbl 1332.46001
[21]Heinonen, J.; Koskela, P., Quasiconformal maps in metric spaces with controlled geometry, Acta Math., 181, 1, 1-61 (1998) ·Zbl 0915.30018
[22]Kinnunen, J.; Korte, R.; Shanmugalingam, N.; Tuominen, H., A characterization of Newtonian functions with zero boundary values, Calc. Var. Partial Differ. Equ., 43, 3-4, 507-528 (2012) ·Zbl 1238.31008
[23]Kinnunen, J.; Korte, R.; Shanmugalingam, N.; Tuominen, H., Lebesgue points and capacities via the boxing inequality in metric spaces, Indiana Univ. Math. J., 57, 1, 401-430 (2008) ·Zbl 1146.46018
[24]Kinnunen, J.; Korte, R.; Shanmugalingam, N.; Tuominen, H., Pointwise properties of functions of bounded variation on metric spaces, Rev. Mat. Complut., 27, 1, 41-67 (2014) ·Zbl 1295.26012
[25]Kinnunen, J.; Korte, R.; Shanmugalingam, N.; Tuominen, H., The DeGiorgi measure and an obstacle problem related to minimal surfaces in metric spaces, J. Math. Pures Appl., 93, 599-622 (2010) ·Zbl 1211.49055
[26]Korte, R.; Lahti, P., Relative isoperimetric inequalities and sufficient conditions for finite perimeter on metric spaces, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 31, 1, 129-154 (2014) ·Zbl 1285.28003
[27]Korte, R.; Lahti, P.; Shanmugalingam, N., Semmes family of curves and a characterization of functions of bounded variation in terms of curves, Calc. Var. Partial Differ. Equ., 54, 2, 1393-1424 (2015) ·Zbl 1327.31026
[28]Lahti, P., Extensions and traces of functions of bounded variation on metric spaces, J. Math. Anal. Appl., 423, 1, 521-537 (2015) ·Zbl 1302.26006
[29]Lahti, P.; Shanmugalingam, N., Trace theorems for functions of bounded variation in metric spaces, submitted for publication ·Zbl 1392.26016
[30]Macíías, R. A.; Segovia, C., A decomposition into atoms of distributions on spaces of homogeneous type, Adv. Math., 33, 3, 271-309 (1979) ·Zbl 0431.46019
[31]Miranda, M., Functions of bounded variation on “good” metric spaces, J. Math. Pures Appl. (9), 82, 8, 975-1004 (2003) ·Zbl 1109.46030
[32]Shanmugalingam, N., Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoam., 16, 2, 243-279 (2000) ·Zbl 0974.46038
[33]Whitney, H., Analytic extensions of differentiable functions defined in closed sets, Trans. Am. Math. Soc., 36, 63-89 (1934) ·JFM 60.0217.01
[34]Ziemer, W. P., Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Grad. Texts Math., vol. 120 (1989), Springer-Verlag: Springer-Verlag New York ·Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp