[1] | Ambrosio, L., Fine properties of sets of finite perimeter in doubling metric measure spaces, Calculus of variations, nonsmooth analysis and related topics, Set-Valued Anal., 10, 2-3, 111-128 (2002) ·Zbl 1037.28002 |
[2] | Ambrosio, L.; Colombo, M.; DiMarino, S., Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope, preprint ·Zbl 1370.46018 |
[3] | Ambrosio, L.; Fusco, N.; Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems, Oxf. Math. Monogr. (2000), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press New York ·Zbl 0957.49001 |
[4] | Ambrosio, L.; Miranda, M.; Pallara, D., Special functions of bounded variation in doubling metric measure spaces, (Calculus of Variations: Topics from the Mathematical Heritage of E. De Giorgi. Calculus of Variations: Topics from the Mathematical Heritage of E. De Giorgi, Quad. Mat., vol. 14 (2004), Dept. Math., Seconda Univ. Napoli: Dept. Math., Seconda Univ. Napoli Caserta), 1-45 ·Zbl 1089.49039 |
[5] | Ambrosio, L.; Tilli, P., Topics on Analysis in Metric Spaces, Oxford Lecture Ser. Math. Appl., vol. 25 (2004), Oxford University Press: Oxford University Press Oxford, viii+133 pp ·Zbl 1080.28001 |
[6] | Björn, A.; Björn, J., Nonlinear Potential Theory on Metric Spaces, EMS Tracts Math., vol. 17 (2011), European Mathematical Society (EMS): European Mathematical Society (EMS) Zürich, xii+403 pp ·Zbl 1231.31001 |
[7] | Björn, A.; Björn, J.; Shanmugalingam, N., Quasicontinuity of Newton-Sobolev functions and density of Lipschitz functions on metric spaces, Houst. J. Math., 34, 4, 1197-1211 (2008) ·Zbl 1170.46032 |
[8] | Björn, A.; Björn, J.; Shanmugalingam, N., Sobolev extensions of Hölder continuous and characteristic functions on metric spaces, Can. J. Math., 59, 6, 1135-1153 (2007) ·Zbl 1137.46018 |
[9] | Bourgain, J.; Korobkov, M.; Kristensen, J., On the Morse-Sard property and level sets of \(W^{n, 1}\) Sobolev functions on \(R^n\), J. Reine Angew. Math., 700, 93-112 (2015) ·Zbl 1322.46022 |
[10] | Cheeger, J., Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9, 3, 428-517 (1999) ·Zbl 0942.58018 |
[11] | Coifman, R. R.; Weiss, G., Analyse harmonique non-commutative sur certaines espaces homogènes. Étude de certaines intégrales singulières, Lect. Notes Math., vol. 242 (1971), Springer-Verlag: Springer-Verlag Berlin/New York, v+160 pp ·Zbl 0224.43006 |
[12] | Evans, L. C.; Gariepy, R. F., Measure Theory and Fine Properties of Functions, Stud. Adv. Math. (1992), CRC Press: CRC Press Boca Raton ·Zbl 0626.49007 |
[13] | Federer, H., Geometric Measure Theory, Grundlehren Math. Wiss., vol. 153 (1969), Springer-Verlag New York Inc.: Springer-Verlag New York Inc. New York, xiv+676 pp ·Zbl 0176.00801 |
[14] | Giusti, E., Minimal Surfaces and Functions of Bounded Variation (1984), Birkhäuser ·Zbl 0545.49018 |
[15] | Hajłasz, P., Sobolev spaces on metric-measure spaces, (Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces. Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces, Paris, 2002. Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces. Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces, Paris, 2002, Contemp. Math., vol. 338 (2003), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 173-218 ·Zbl 1048.46033 |
[16] | Hakkarainen, H.; Kinnunen, J., The BV-capacity in metric spaces, Manuscr. Math., 132, 1-2, 51-73 (2010) ·Zbl 1194.28001 |
[18] | Hakkarainen, H.; Shanmugalingam, N., Comparisons of relative BV-capacities and Sobolev capacity in metric spaces, Nonlinear Anal., 74, 16, 5525-5543 (2011) ·Zbl 1248.28002 |
[19] | Heikkinen, T.; Koskela, P.; Tuominen, H., Sobolev-type spaces from generalized Poincaré inequalities, Stud. Math., 181, 1, 1-16 (2007) ·Zbl 1129.46026 |
[20] | Heinonen, J.; Koskela, P.; Shanmugalingam, N.; Tyson, J., Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients, New Math. Monogr., vol. 27, i-xi+448 (2015), Cambridge University Press ·Zbl 1332.46001 |
[21] | Heinonen, J.; Koskela, P., Quasiconformal maps in metric spaces with controlled geometry, Acta Math., 181, 1, 1-61 (1998) ·Zbl 0915.30018 |
[22] | Kinnunen, J.; Korte, R.; Shanmugalingam, N.; Tuominen, H., A characterization of Newtonian functions with zero boundary values, Calc. Var. Partial Differ. Equ., 43, 3-4, 507-528 (2012) ·Zbl 1238.31008 |
[23] | Kinnunen, J.; Korte, R.; Shanmugalingam, N.; Tuominen, H., Lebesgue points and capacities via the boxing inequality in metric spaces, Indiana Univ. Math. J., 57, 1, 401-430 (2008) ·Zbl 1146.46018 |
[24] | Kinnunen, J.; Korte, R.; Shanmugalingam, N.; Tuominen, H., Pointwise properties of functions of bounded variation on metric spaces, Rev. Mat. Complut., 27, 1, 41-67 (2014) ·Zbl 1295.26012 |
[25] | Kinnunen, J.; Korte, R.; Shanmugalingam, N.; Tuominen, H., The DeGiorgi measure and an obstacle problem related to minimal surfaces in metric spaces, J. Math. Pures Appl., 93, 599-622 (2010) ·Zbl 1211.49055 |
[26] | Korte, R.; Lahti, P., Relative isoperimetric inequalities and sufficient conditions for finite perimeter on metric spaces, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 31, 1, 129-154 (2014) ·Zbl 1285.28003 |
[27] | Korte, R.; Lahti, P.; Shanmugalingam, N., Semmes family of curves and a characterization of functions of bounded variation in terms of curves, Calc. Var. Partial Differ. Equ., 54, 2, 1393-1424 (2015) ·Zbl 1327.31026 |
[28] | Lahti, P., Extensions and traces of functions of bounded variation on metric spaces, J. Math. Anal. Appl., 423, 1, 521-537 (2015) ·Zbl 1302.26006 |
[29] | Lahti, P.; Shanmugalingam, N., Trace theorems for functions of bounded variation in metric spaces, submitted for publication ·Zbl 1392.26016 |
[30] | Macíías, R. A.; Segovia, C., A decomposition into atoms of distributions on spaces of homogeneous type, Adv. Math., 33, 3, 271-309 (1979) ·Zbl 0431.46019 |
[31] | Miranda, M., Functions of bounded variation on “good” metric spaces, J. Math. Pures Appl. (9), 82, 8, 975-1004 (2003) ·Zbl 1109.46030 |
[32] | Shanmugalingam, N., Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoam., 16, 2, 243-279 (2000) ·Zbl 0974.46038 |
[33] | Whitney, H., Analytic extensions of differentiable functions defined in closed sets, Trans. Am. Math. Soc., 36, 63-89 (1934) ·JFM 60.0217.01 |
[34] | Ziemer, W. P., Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Grad. Texts Math., vol. 120 (1989), Springer-Verlag: Springer-Verlag New York ·Zbl 0692.46022 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.