05E05 | Symmetric functions and generalizations |
14N15 | Classical problems, Schubert calculus |
14M15 | Grassmannians, Schubert varieties, flag manifolds |
[1] | Blasiak, J., Fomin, S.: Noncommutative Schur functions, switchboards, and positivity. Preprint arXiv:1510.00657 (2015) ·Zbl 1355.05249 |
[2] | Buch, A.: A Littlewood Richardson rule for the K-theory of Grassmannians. Acta Math. 189, 37-78 (2002) ·Zbl 1090.14015 ·doi:10.1007/BF02392644 |
[3] | Fomin, S.: Schur operators and Knuth correspondences. J. Comb. Theory Ser. A 72, 277-292 (1995) ·Zbl 0839.05093 ·doi:10.1016/0097-3165(95)90065-9 |
[4] | Fomin, S., Greene, C.: Noncommutative Schur functions and their applications. Discrete Math. 193, 179-200 (1998) ·Zbl 1011.05062 ·doi:10.1016/S0012-365X(98)00140-X |
[5] | Fomin, S., Kirillov, A. N.: Grothendieck polynomials and the Yang-Baxter equation. In: Proceedings of 6th International Conference on Formal Power Series and Algebraic Combinatorics, DIMACS, pp. 183-190 (1994) ·Zbl 1278.05240 |
[6] | Fomin, S., Kirillov, A.N.: The Yang-Baxter equation, symmetric functions, and Schubert polynomials. Discrete Math. 153, 123-143 (1996) ·Zbl 0852.05078 ·doi:10.1016/0012-365X(95)00132-G |
[7] | Galashin, P., Grinberg, D., Liu, G.: Refined dual stable Grothendieck polynomials and generalized Bender-Knuth involutions. Preprint arXiv:1509.03803 (2015) ·Zbl 1344.05148 |
[8] | Gessel, I., Viennot, X.: Determinants, paths, and plane partitions. Preprint (1989) ·Zbl 0579.05004 |
[9] | Ikeda, T., Naruse, \[H.: KK\]-theoretic analogues of factorial Schur P- and Q-functions. Adv. Math. 243, 22-66 (2013) ·Zbl 1278.05240 ·doi:10.1016/j.aim.2013.04.014 |
[10] | Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. math. 53, 165-184 (1979) ·Zbl 0499.20035 ·doi:10.1007/BF01390031 |
[11] | Kirillov, A.: On some quadratic algebras I 1/2: combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials. Preprint RIMS-1817 arXiv:1502.00426 (2015) |
[12] | Lam, T., Pylyavskyy, P.: Combinatorial Hopf algebras and K-homology of Grassmanians. Int. Math. Res. Not. (2007). doi:10.1093/imrn/rnm125 ·Zbl 1134.16017 |
[13] | Lascoux, A., Naruse, H.: Finite sum Cauchy identity for dual Grothendieck polynomials. Proc. Jpn. Acad. Ser. A 90, 87-91 (2014) ·Zbl 1360.05183 |
[14] | Lascoux, A., Schutzenberger, M.-P.: Symmetry and flag manifolds. Lect. Notes Math. 996, 118-144 (1983) ·Zbl 0542.14031 ·doi:10.1007/BFb0063238 |
[15] | Lenart, C.: Combinatorial aspects of the K-theory of Grassmannians. Ann. Comb. 4(1), 67-82 (2000) ·Zbl 0958.05128 ·doi:10.1007/PL00001276 |
[16] | Maconald, I.G.: Symmetric Functions and Hall Polynomials. Oxford University Press, Oxford (1998) ·Zbl 0899.05068 |
[17] | Molev, A.: Comultiplication rules for the double Schur functions and Cauchy identities. Electron. J. Comb. 16, R13 (2009) ·Zbl 1182.05128 |
[18] | Motegi, K., Sakai, K.: Vertex models, TASEP and Grothendieck polynomials. J. Phys. A 46(35), 26 (2013) ·Zbl 1278.82042 ·doi:10.1088/1751-8113/46/35/355201 |
[19] | Patrias, R., Pylyavskyy, P.: K-theoretic Poirier-Reutenauer bialgebra. Preprint arXiv:1404.4340 (2014) ·Zbl 1328.05193 |
[20] | Patrias, R.: Antipode formulas for combinatorial Hopf algebras. Preprint arXiv:1501.00710 (2015) ·Zbl 1351.05234 |
[21] | Shimozono, M., Zabrocki, M.: Stable Grothendieck symmetric functions and \[\Omega\] Ω-calculus. Preprint (2003) ·Zbl 1122.17018 |
[22] | Stanley, R.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999) ·Zbl 0928.05001 ·doi:10.1017/CBO9780511609589 |