Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Duality and deformations of stable Grothendieck polynomials.(English)Zbl 1355.05263

Summary: Stable Grothendieck polynomials can be viewed as a \(K\)-theory analog of Schur polynomials. We extend stable Grothendieck polynomials to a two-parameter version, which we call canonical stable Grothendieck functions. These functions have the same structure constants (with scaling) as stable Grothendieck polynomials and (composing with parameter switching) are self-dual under the standard involutive ring automorphism. We study various properties of these functions, including combinatorial formulas, Schur expansions, Jacobi-Trudi-type identities, and associated Fomin-Greene operators.

MSC:

05E05 Symmetric functions and generalizations
14N15 Classical problems, Schubert calculus
14M15 Grassmannians, Schubert varieties, flag manifolds

Cite

References:

[1]Blasiak, J., Fomin, S.: Noncommutative Schur functions, switchboards, and positivity. Preprint arXiv:1510.00657 (2015) ·Zbl 1355.05249
[2]Buch, A.: A Littlewood Richardson rule for the K-theory of Grassmannians. Acta Math. 189, 37-78 (2002) ·Zbl 1090.14015 ·doi:10.1007/BF02392644
[3]Fomin, S.: Schur operators and Knuth correspondences. J. Comb. Theory Ser. A 72, 277-292 (1995) ·Zbl 0839.05093 ·doi:10.1016/0097-3165(95)90065-9
[4]Fomin, S., Greene, C.: Noncommutative Schur functions and their applications. Discrete Math. 193, 179-200 (1998) ·Zbl 1011.05062 ·doi:10.1016/S0012-365X(98)00140-X
[5]Fomin, S., Kirillov, A. N.: Grothendieck polynomials and the Yang-Baxter equation. In: Proceedings of 6th International Conference on Formal Power Series and Algebraic Combinatorics, DIMACS, pp. 183-190 (1994) ·Zbl 1278.05240
[6]Fomin, S., Kirillov, A.N.: The Yang-Baxter equation, symmetric functions, and Schubert polynomials. Discrete Math. 153, 123-143 (1996) ·Zbl 0852.05078 ·doi:10.1016/0012-365X(95)00132-G
[7]Galashin, P., Grinberg, D., Liu, G.: Refined dual stable Grothendieck polynomials and generalized Bender-Knuth involutions. Preprint arXiv:1509.03803 (2015) ·Zbl 1344.05148
[8]Gessel, I., Viennot, X.: Determinants, paths, and plane partitions. Preprint (1989) ·Zbl 0579.05004
[9]Ikeda, T., Naruse, \[H.: KK\]-theoretic analogues of factorial Schur P- and Q-functions. Adv. Math. 243, 22-66 (2013) ·Zbl 1278.05240 ·doi:10.1016/j.aim.2013.04.014
[10]Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. math. 53, 165-184 (1979) ·Zbl 0499.20035 ·doi:10.1007/BF01390031
[11]Kirillov, A.: On some quadratic algebras I 1/2: combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials. Preprint RIMS-1817 arXiv:1502.00426 (2015)
[12]Lam, T., Pylyavskyy, P.: Combinatorial Hopf algebras and K-homology of Grassmanians. Int. Math. Res. Not. (2007). doi:10.1093/imrn/rnm125 ·Zbl 1134.16017
[13]Lascoux, A., Naruse, H.: Finite sum Cauchy identity for dual Grothendieck polynomials. Proc. Jpn. Acad. Ser. A 90, 87-91 (2014) ·Zbl 1360.05183
[14]Lascoux, A., Schutzenberger, M.-P.: Symmetry and flag manifolds. Lect. Notes Math. 996, 118-144 (1983) ·Zbl 0542.14031 ·doi:10.1007/BFb0063238
[15]Lenart, C.: Combinatorial aspects of the K-theory of Grassmannians. Ann. Comb. 4(1), 67-82 (2000) ·Zbl 0958.05128 ·doi:10.1007/PL00001276
[16]Maconald, I.G.: Symmetric Functions and Hall Polynomials. Oxford University Press, Oxford (1998) ·Zbl 0899.05068
[17]Molev, A.: Comultiplication rules for the double Schur functions and Cauchy identities. Electron. J. Comb. 16, R13 (2009) ·Zbl 1182.05128
[18]Motegi, K., Sakai, K.: Vertex models, TASEP and Grothendieck polynomials. J. Phys. A 46(35), 26 (2013) ·Zbl 1278.82042 ·doi:10.1088/1751-8113/46/35/355201
[19]Patrias, R., Pylyavskyy, P.: K-theoretic Poirier-Reutenauer bialgebra. Preprint arXiv:1404.4340 (2014) ·Zbl 1328.05193
[20]Patrias, R.: Antipode formulas for combinatorial Hopf algebras. Preprint arXiv:1501.00710 (2015) ·Zbl 1351.05234
[21]Shimozono, M., Zabrocki, M.: Stable Grothendieck symmetric functions and \[\Omega\] Ω-calculus. Preprint (2003) ·Zbl 1122.17018
[22]Stanley, R.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999) ·Zbl 0928.05001 ·doi:10.1017/CBO9780511609589
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp