Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Mimetic finite difference method.(English)Zbl 1352.65420

Summary: The mimetic finite difference (MFD) method mimics fundamental properties of mathematical and physical systems including conservation laws, symmetry and positivity of solutions, duality and self-adjointness of differential operators, and exact mathematical identities of the vector and tensor calculus. This article is the first comprehensive review of the 50-year long history of the mimetic methodology and describes in a systematic way the major mimetic ideas and their relevance to academic and real-life problems. The supporting applications include diffusion, electromagnetics, fluid flow, and Lagrangian hydrodynamics problems. The article provides enough details to build various discrete operators on unstructured polygonal and polyhedral meshes and summarizes the major convergence results for the mimetic approximations. Most of these theoretical results, which are presented here as lemmas, propositions and theorems, are either original or an extension of existing results to a more general formulation using polyhedral meshes. Finally, flexibility and extensibility of the mimetic methodology are shown by deriving higher-order approximations, enforcing discrete maximum principles for diffusion problems, and ensuring the numerical stability for saddle-point systems.

MSC:

65N06 Finite difference methods for boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

Keywords:

BETHE-Hydro

Software:

BETHE-hydro

Cite

References:

[1]Aarnes, J. E.; Krogstad, S.; Lie, K.-A., Multiscale mixed/mimetic methods on corner-point grids, Comput. Geosci., 12, 3, 297-315 (2007) ·Zbl 1259.76065
[2]Aavatsmark, I.; Barkve, T.; Bøe, O.; Mannseth, T., Discretization on unstructured grids for inhomogeneous, anisotropic media. I. Derivation of the methods, SIAM J. Sci. Comput., 19, 5, 1700-1716 (1998), (electronic) ·Zbl 0951.65080
[3]Aavatsmark, I.; Barkve, T.; Bøe, O.; Mannseth, T., Discretization on unstructured grids for inhomogeneous, anisotropic media. II. Discussion and numerical results, SIAM J. Sci. Comput., 19, 5, 1717-1736 (1998) ·Zbl 0951.65082
[4]Abba, A.; Bonaventura, L., A mimetic finite difference discretization for the incompressible Navier-Stokes equations, Int. J. Numer. Methods Fluids, 56, 8, 1101-1106 (2008) ·Zbl 1139.76041
[5]Alpak, F. O., A mimetic finite volume discretization method for reservoir simulation, SPE J., 15, 2, 436-453 (2010)
[6]Andreianov, B.; Boyer, F.; Hubert, F., Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes, Numer. Methods Partial Differ. Equ., 23, 1, 145-195 (2007) ·Zbl 1111.65101
[7]Antonietti, P. F.; Beirão da Veiga, L.; Verani, M., Hierarchical a posteriori error estimators for the mimetic discretization of elliptic problems, SIAM J. Numer. Anal., 51, 654-675 (2013) ·Zbl 1267.65159
[8]Antonietti, P. F.; Beirão da Veiga, L.; Verani, M., A mimetic discretization of elliptic obstacle problems, Math. Comput., 82, 1379-1400 (2013) ·Zbl 1271.65136
[9]Apanovich, Yu. A.; Lymkis, E. D., Difference schemes for the Navier-Stokes equations on a net consisting of Dirichlet cells, Comput. Math. Math. Phys., 28, 2, 57-63 (1988) ·Zbl 0672.76033
[10]Arakawa, A., Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I, J. Comput. Phys., 1, 119-143 (1966) ·Zbl 0147.44202
[11]Arakawa, A.; Lamb, V. R., A potential enstrophy and energy conserving scheme for the shallow water equations, Mon. Weather Rev., 109, 18-36 (1981)
[12]Ardelyan, N. V., The convergence of difference schemes for two-dimensional equations of acoustic and Maxwellsʼs equations, Comput. Math. Math. Phys., 23, 5, 93-99 (1983) ·Zbl 0571.65107
[13]Ardelyan, N. V., Method of investigating the convergence of non-linear finite-difference schemes, Differ. Equ., 23, 7, 737-745 (1987) ·Zbl 0637.65099
[14]Ardelyan, N. V.; Chernigovskii, S. V., Convergence of difference schemes for two-dimensional gas-dynamics equations in acoustic approximations with gravitation taken into account, Differ. Equ., 20, 7, 807-813 (1984) ·Zbl 0561.76088
[15]Arnold, D. N.; Falk, R. S.; Winther, R., Finite element exterior calculus, homological techniques, and applications, Acta Numer., 15, 1-155 (2006) ·Zbl 1185.65204
[16]Arnold, D. N.; Falk, R. S.; Winther, R., Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Amer. Math. Soc. (N.S.), 47, 2, 281-354 (2010) ·Zbl 1207.65134
[17]Baghai-Wadji, A., Conservative finite difference method as applied to electromagnetic radiation problems in saw devices, (Foster, F. S., Proceedings of the IEEE Int. Ultrasonics Symposium. Proceedings of the IEEE Int. Ultrasonics Symposium, 2-6 October, Quebec, Canada (2006))
[18]Bakirova, M.; Burdiashvili, M.; Voʼtenko, D.; Ivanov, A.; Karpov, V.; Kirov, A.; Korshiaya, T.; Krukovskii, A.; Lubimov, B.; Tishkin, V.; Favorskii, A.; Shashkov, M., On simulation of a magnetic field in a spiral band reel (1981), Keldysh Inst. Appl. Math. USSR Acad. Sci., (In Russian)
[19]Barlow, A.; Burton, D.; Shashkov, M., Compatible, energy and symmetry preserving 2D Lagrangian hydrodynamics in rz-cylindrical coordinates, Proc. Comput. Sci., 1, 1887-1895 (2010)
[20]Bartolo, C. D.; Gambini, R.; Pullin, J., Consistent and mimetic discretizations in general relativity, J. Math. Phys., 46, 032501-01-032501-18 (2005) ·Zbl 1076.83009
[21]Bazan, C.; Abouali, M.; Castillo, J.; Blomgren, P., Mimetic finite difference methods in image processing, Comput. Appl. Math., 30, 3, 701-720 (2011) ·Zbl 1252.68328
[22]Beirão da Veiga, L., A residual based error estimator for the mimetic finite difference method, Numer. Math., 108, 3, 387-406 (2008) ·Zbl 1144.65067
[23]Beirão da Veiga, L., A mimetic finite difference method for linear elasticity, M2AN Math. Models Numer. Anal., 44, 2, 231-250 (2010) ·Zbl 1258.74206
[24]Beirão da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, L. D.; Russo, A., Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23, 1, 199-214 (2013) ·Zbl 1416.65433
[25]Beirão da Veiga, L.; Droniou, J.; Manzini, G., A unified approach to handle convection term in finite volumes and mimetic discretization methods for elliptic problems, IMA J. Numer. Anal., 31, 4, 1357-1401 (2011) ·Zbl 1263.65102
[26]Beirão da Veiga, L.; Gyrya, V.; Lipnikov, K.; Manzini, G., Mimetic finite difference method for the Stokes problem on polygonal meshes, J. Comput. Phys., 228, 19, 7215-7232 (2009) ·Zbl 1172.76032
[27]Beirão da Veiga, L.; Lipnikov, K., A mimetic discretization of the Stokes problem with selected edge bubbles, SIAM J. Sci. Comput., 32, 2, 875-893 (2010) ·Zbl 1352.76021
[28]Beirão da Veiga, L.; Lipnikov, K.; Manzini, G., Convergence analysis of the high-order mimetic finite difference method, Numer. Math., 113, 3, 325-356 (2009) ·Zbl 1183.65132
[29]Beirão da Veiga, L.; Lipnikov, K.; Manzini, G., Error analysis for a mimetic discretization of the steady Stokes problem on polyhedral meshes, SIAM J. Numer. Anal., 48, 4, 1419-1443 (2010) ·Zbl 1352.76022
[30]Beirão da Veiga, L.; Lipnikov, K.; Manzini, G., Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes, SIAM J. Numer. Anal., 49, 5, 1737-1760 (2011) ·Zbl 1242.65215
[31]Beirão da Veiga, L.; Manzini, G., An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems, Int. J. Numer. Methods Eng., 76, 11, 1696-1723 (2008) ·Zbl 1195.65146
[32]Beirão da Veiga, L.; Manzini, G., A higher-order formulation of the mimetic finite difference method, SIAM J. Sci. Comput., 31, 1, 732-760 (2008) ·Zbl 1185.65201
[33]Beirão da Veiga, L.; Mora, D., A mimetic discretization of the Reissner-Mindlin plate bending problem, Numer. Math., 117, 3, 425-462 (2011) ·Zbl 1428.74132
[34]Benson, D. J.; Bazilevs, Y.; De Luycker, E.; Hsu, M.-C.; Scott, M.; Hughes, T. J.R.; Belytschko, T., A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to xfem, Int. J. Numer. Methods Eng., 83, 6, 765-785 (2010) ·Zbl 1197.74177
[35]Benson, D. J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput. Methods Appl. Mech. Eng., 99, 235-394 (1992) ·Zbl 0763.73052
[36]Berndt, M.; Lipnikov, K.; Moulton, J. D.; Shashkov, M., Convergence of mimetic finite difference discretizations of the diffusion equation, East-West J. Numer. Math., 9, 253-284 (2001) ·Zbl 1014.65114
[37]Berndt, M.; Lipnikov, K.; Shashkov, M.; Wheeler, M. F.; Yotov, I., Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals, SIAM J. Numer. Anal., 43, 4, 1728-1749 (2005) ·Zbl 1096.76030
[38]Berndt, M.; Lipnikov, K.; Shashkov, M.; Wheeler, M. F.; Yotov, I., A mortar mimetic finite difference method on non-matching grids, Numer. Math., 102, 2, 203-230 (2005) ·Zbl 1089.65114
[39]Bertolazzi, E.; Manzini, G., A cell-centered second-order accurate finite volume method for convection-diffusion problems on unstructured meshes, Math. Models Methods Appl. Sci., 14, 8, 1235-1260 (2004) ·Zbl 1079.65113
[40]Bertolazzi, E.; Manzini, G., A second-order maximum principle preserving finite volume method for steady convection-diffusion problems, SIAM J. Numer. Anal., 43, 5, 2172-2199 (2005) ·Zbl 1145.65326
[41]Bertolazzi, E.; Manzini, G., On vertex reconstructions for cell-centered finite volume approximations of 2D anisotropic diffusion problems, Math. Models Methods Appl. Sci., 17, 1, 1-32 (2007) ·Zbl 1119.65115
[42]Bochev, P.; Hyman, J. M., Principle of mimetic discretizations of differential operators, (Arnold, D.; Bochev, P.; Lehoucq, R.; Nicolaides, R.; Shashkov, M., Compatible Discretizations. Proceedings of IMA Hot Topics Workshop on Compatible Discretizations. Compatible Discretizations. Proceedings of IMA Hot Topics Workshop on Compatible Discretizations, IMA Vol. Math. Appl. (2006), Springer), 89-120 ·Zbl 1110.65103
[43]Bochev, P.; Shashkov, M., Constrained interpolation (remap) of divergence-free fields, Comput. Methods Appl. Mech. Eng., 194, 511-530 (2005) ·Zbl 1143.65389
[44](Boffi, D.; Brezzi, F.; Demkowicz, L. F.; Durán, R. G.; Falk, R. S.; Fortin, M., Mixed Finite Elements, Compatibility Conditions, and Applications. Mixed Finite Elements, Compatibility Conditions, and Applications, Lecture Notes in Mathematics, vol. 1939 (2006), Springer: Springer Berlin)
[45]Bonaventura, L.; Ringler, T., Analysis of discrete shallow-water models on geodesic Delaunay grids with c-type staggering, Mon. Weather Rev., 133, 2351-2373 (2005)
[46]Bossavit, A., Mixed finite elements and the complex of Whitney forms, (The Mathematics of Finite Elements and Applications, VI. The Mathematics of Finite Elements and Applications, VI, Uxbridge, 1987 (1988), Academic Press: Academic Press London), 137-144 ·Zbl 0692.65053
[47]Bossavit, A., Differential forms and the computation of fields and forces in electromagnetism, Eur. J. Mech. B, Fluids, 10, 5, 474-488 (1991) ·Zbl 0741.76088
[48]Bossavit, A., Mixed methods and the marriage between “mixed” finite elements and boundary elements, Numer. Methods Partial Differ. Equ., 7, 4, 347-362 (1991) ·Zbl 0744.65086
[49]Bossavit, A., Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements (1998), Academic Press Inc.: Academic Press Inc. San Diego, CA ·Zbl 0945.78001
[50]Bouman, M.; Palha, A.; Kreeft, J.; Gerritsma, M., A conservative spectral element method for curvilinear domains, (Spectral and High Order Methods for Partial Differential Equations. Spectral and High Order Methods for Partial Differential Equations, Lecture Notes in Computational Science and Engineering, vol. 76 (2011)), 111-119 ·Zbl 1216.65166
[51]Brezzi, F.; Buffa, A., Innovative mimetic discretizations for electromagnetic problems, J. Comput. Appl. Mech., 234, 1980-1987 (2010) ·Zbl 1191.78056
[52]Brezzi, F.; Buffa, A.; Lipnikov, K., Mimetic finite differences for elliptic problems, M2AN Math. Models Numer. Anal., 43, 277-295 (2009) ·Zbl 1177.65164
[53]Brezzi, F.; Buffa, A.; Manzini, G., Mimetic scalar products for discrete differential forms, J. Comput. Phys., 257, 1228-1259 (2014) ·Zbl 1352.65417
[54]Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer-Verlag: Springer-Verlag New York ·Zbl 0788.73002
[55]Brezzi, F.; Lipnikov, K.; Shashkov, M., Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal., 43, 5, 1872-1896 (2005) ·Zbl 1108.65102
[56]Brezzi, F.; Lipnikov, K.; Shashkov, M., Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces, Math. Models Methods Appl. Sci., 16, 2, 275-297 (2006) ·Zbl 1094.65111
[57]Brezzi, F.; Lipnikov, K.; Shashkov, M.; Simoncini, V., A new discretization methodology for diffusion problems on generalized polyhedral meshes, Comput. Methods Appl. Mech. Eng., 196, 3682-3692 (2007) ·Zbl 1173.76370
[58]Brezzi, F.; Lipnikov, K.; Simoncini, V., A family of mimetic finite difference methods on polygonal and polyhedral meshes, Math. Models Methods Appl. Sci., 15, 10, 1533-1551 (2005) ·Zbl 1083.65099
[59]Buffa, A., Remarks on the discretization of some noncoercive operator with applications to heterogeneous Maxwell equations, SIAM J. Numer. Anal., 43, 1, 1-18 (2006) ·Zbl 1128.78010
[60]Buffa, A.; Christiansen, S. H., A dual finite element complex on the barycentric refinement, Math. Comput., 76, 260, 1743-1769 (2007) ·Zbl 1130.65108
[61]Burdiashvili, M.; Voʼtenko, D.; Ivanov, A.; Kirov, A.; Tishkin, V.; Favorskii, A.; Shashkov, M., A magnetic field of a toroidal spiral with a screen, Keldysh Inst. Appl. Math. USSR Acad. Sci., 63 (1984), (in Russian)
[64]Campbell, J.; Hyman, J. M.; Shashkov, M., Mimetic finite difference operators for second-order tensors on unstructured grids, Comput. Math. Appl., 44, 157-173 (2002) ·Zbl 0999.65013
[65]Campbell, J.; Shashkov, M., A tensor artificial viscosity using a mimetic finite difference algorithm, J. Comput. Phys., 172, 739-765 (2001) ·Zbl 1002.76082
[66]Campbell, J. C.; Shashkov, M. J., A compatible Lagrangian hydrodynamics algorithm for unstructured grids, Selcuk J. Appl. Math., 4, 53-70 (2003) ·Zbl 1150.76433
[67]Cangiani, A.; Gardini, F.; Manzini, G., Convergence of the mimetic finite difference method for eigenvalue problems in mixed form, Comput. Methods Appl. Mech. Eng., 200, 9-12, 1150-1160 (2011) ·Zbl 1225.65106
[68]Cangiani, A.; Manzini, G., Flux reconstruction and pressure post-processing in mimetic finite difference methods, Comput. Methods Appl. Mech. Eng., 197, 9-12, 933-945 (2008) ·Zbl 1169.76404
[69]Cangiani, A.; Manzini, G.; Russo, A., Convergence analysis of the mimetic finite difference method for elliptic problems, SIAM J. Numer. Anal., 47, 4, 2612-2637 (2009) ·Zbl 1204.65128
[70]Caramana, E. J.; Burton, D. E.; Shashkov, M. J.; Whalen, P. P., The construction of compatible hydrodynamics algorithms utilizing conservation of total energy, J. Comput. Phys., 146, 227-262 (1998) ·Zbl 0931.76080
[71]Caramana, E. J.; Shashkov, M. J., Elimination of artificial grid distortion and hourglass-type motions by means of Lagrangian subzonal masses and pressures, J. Comput. Phys., 142, 521-561 (1998) ·Zbl 0932.76068
[72]Caramana, E. J.; Shashkov, M. J.; Whalen, P. P., Formulations of artificial viscosity for multi-dimensional shock wave computations, J. Comput. Phys., 144, 70-97 (1998) ·Zbl 1392.76041
[73]Castillo, J.; Hyman, J.; Shashkov, M.; Steinberg, S., The sensitivity and accuracy of fourth order finite-difference schemes on nonuniform grids in one dimension, Int. J. Comput. Math. Appl., 30, 8, 41-55 (1995) ·Zbl 0836.65025
[74]Castillo, J. E.; Hyman, J. M.; Shashkov, M. J.; Steinberg, S.; Ilin, A. V.; Scott, L. R., High-order mimetic finite difference methods on nonuniform grids, Houston J. Math., 347-361 (1995), (Special Issue)
[75]Chard, J. A.; Shapiro, V., A multivector data structure for differential forms and equations, Math. Comput. Simul., 54, 1-3, 33-64 (2000)
[76]Clemens, M.; Weiland, T., Discrete electromagnetism with the finite integration technique, Prog. Electromagn. Res., 32, 65-87 (2001)
[77]Cohen, G.; Joly, P.; Roberts, J. E.; Tordjman, N., Higher order triangular finite elements with mass lumping for the wave equation, J. Numer. Anal., 38, 6, 2047-2078 (2001) ·Zbl 1019.65077
[78]Collins, R., Mathematical modelling of controlled release from implanted drug-impregnated monoliths, Pharmaceut. Sci. Technol. Today, 1, 6, 269-276 (1998)
[79]Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Unification of CAD and FEA (2009), John Wiley and Sons ·Zbl 1378.65009
[80]Coudière, Y.; Hubert, F., A 3d discrete duality finite volume method for nonlinear elliptic equations, SIAM J. Sci. Comput., 33, 4, 1739-1764 (2011) ·Zbl 1243.35061
[81]Coudière, Y.; Manzini, G., The discrete duality finite volume method for convection-diffusion problems, SIAM J. Numer. Anal., 47, 6, 4163-4192 (2010) ·Zbl 1210.65183
[82]Coudière, Y.; Vila, J.-P.; Villedieu, P., Convergence rate of a finite volume scheme for a two-dimensional diffusion convection problem, M2AN, Math. Model. Numer. Anal., 33, 3, 493-516 (1999) ·Zbl 0937.65116
[83]Cueto, E.; Sukumar, N.; Calvo, B.; Martínez, M.; Cegoñino, J.; Doblaré, M., Overview and recent advances in natural neighbour Galerkin methods, Arch. Comput. Methods Eng., 10, 4, 307-384 (2003) ·Zbl 1050.74001
[84]Delcourte, S.; Domelevo, K.; Omnes, P., A discrete duality finite volume approach to Hodge decomposition and div-curl problems on almost arbitrary two-dimensional meshes, SIAM J. Numer. Anal., 45, 3, 1142-1174 (2007) ·Zbl 1152.65110
[85]Demin, A. V.; Korobitsyn, V. A.; Mazurenko, A. I.; Khe, A. I., Calculation of the flows of a viscous incompressible liquid with a free surface on two dimensional lagrangian nets, Comput. Math. Math. Phys., 28, 6, 81-87 (1988) ·Zbl 0702.76035
[86]Denisov, A. A.; Koldoba, A. V.; Povesgenko, Yu. A., The convergence to generalized solutions of difference schemes of the reference-operator method for Poissonʼs equation, Comput. Math. Math. Phys., 29, 2, 32-38 (1989) ·Zbl 0702.65085
[87]Desbrun, M.; Hirani, A. N.; Leok, M.; Marsden, J. E., Discrete exterior calculus (2005), Cornell University Library, Technical report
[88]Dezin, A. A., Method of orthogonal expansions, Sib. Math. J., 9, 4, 788-797 (1968) ·Zbl 0185.51301
[89]Dezin, A. A., Some models related to the Euler equations, Differ. Equ., 6, 1, 12-20 (1970) ·Zbl 0247.35008
[90]Dezin, A. A., Natural differential operators and the separation of variables, Differ. Equ., 9, 1, 18-23 (1973) ·Zbl 0295.35073
[91]Dezin, A. A., Combination model of euclidean space and difference operators, Sib. Math. J., 16, 4, 536-545 (1975) ·Zbl 0332.58017
[92]Dezin, A. A., Multidimensional Analysis and Discrete Models (1995), CRC Press: CRC Press Boca Raton, Florida ·Zbl 0851.39008
[93]Dmitrieva, M. V.; Ivanov, A. A.; Tishkin, V. F.; Favorskii, A. P., Construction and investigation of support-operators finite-difference schemes for Maxwell equations in cylindrical geometry (1985), Keldysh Inst. Appl. Math. USSR Acad. Sci., (in Russian)
[94]Dodziuk, J., Finite-difference approach to the Hodge theory of harmonic forms, Am. J. Math., 98, 1, 79-104 (1976) ·Zbl 0324.58001
[95]Domelevo, K.; Omnes, P., A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids, M2AN Math. Models Numer. Anal., 39, 6, 1203-1249 (2005) ·Zbl 1086.65108
[96](Douglas, A.; Bochev, P.; Lehoucq, R.; Nicolaides, R.; Shashkov, M., Compatible Spatial Discret., vol. 142 (2006), Springer Science & Business Media, LLC) ·Zbl 1097.65003
[97]Droniou, J.; Eymard, R., A mixed finite volume scheme for anisotropic diffusion problem on any grid, Numer. Math., 1, 105, 35-71 (2006) ·Zbl 1109.65099
[98]Droniou, J.; Eymard, R.; Gallouët, T.; Herbin, R., A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods, Math. Models Methods Appl. Sci., 20, 2, 265-295 (2010) ·Zbl 1191.65142
[99]Dusinberre, G. M., Heat transfer calculations by numerical methods, J. Am. Soc. Naval Eng., 67, 4, 991-1002 (1955)
[100]Dusinberre, G. M., Heat-Transfer Calculation by Finite Differences (1961), International Textbook Company: International Textbook Company Scranton, Pennsylvania
[101]Edwards, M. G., Unstructured, control-volume distributed, full-tensor finite-volume schemes with flow based grids, Comput. Geosci., 6, 433-452 (2002) ·Zbl 1036.76034
[102]Edwards, M. G.; Rogers, G. F., Finite volume discretization with imposed flux continuity for the general tensor pressure equation, Comput. Geosci., 2, 259-290 (1998) ·Zbl 0945.76049
[103]Eymard, R.; Gallouët, T.; Herbin, R., A cell-centred finite volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension, IMA J. Numer. Anal., 26, 2, 326-353 (2006) ·Zbl 1093.65110
[105]Eymard, R.; Henri, G.; Herbin, R.; Hubert, F.; Klofkorn, R.; Manzini, G., 3D benchmark on discretizations schemes for anisotropic diffusion problems on general grids, (Fort, J.; Furst, J.; Halama, J.; Herbin, R.; Hubert, F., Finite Volumes for Complex Applications VI, Problems and Perspectives, vol. 2 (2011), Springer), 95-130
[106]Favorskii, A.; Korshiya, T.; Shashkov, M.; Tishkin, V., Variational approach to the construction of finite-difference schemes for the diffusion equations for magnetic field, Differ. Equ., 18, 7, 863-872 (1982)
[107]Favorskii, A.; Korshiya, T.; Shashkov, M.; Tishkin, V., A variational approach to the construction of difference schemes on curvilinear meshes for heat-conduction equation, Comput. Math. Math. Phys., 20, 135-155 (1980) ·Zbl 0473.65068
[108]Favorskii, A.; Samarskii, A.; Tishkin, V.; Shashkov, M., On constructing fully conservative difference schemes for gas dynamic equations in eulerian form by the method of basic operators (1981), Keldysh Inst. Appl. Math. USSR Acad. Sci., (in Russian)
[109]Favorskii, A.; Shashkov, M.; Tishkin, V., The usage of topological methods in the discrete models construction (1983), Keldysh Inst. Appl. Math. USSR Acad. Sci., (in Russian)
[110]Favorskii, A. P., Variational discrete models of hydrodynamics equations, Differ. Equ., 16, 7, 834-845 (1980) ·Zbl 0503.76007
[111]Favorskii, A. P.; Korshiya, T.; Tishkin, V. F.; Shashkov, M., Difference schemes for equations of electro-magnetic field diffusion with anisotropic conductivity coefficients (1980), Keldysh Inst. Appl. Math. USSR Acad. Sci., (in Russian)
[112]Fries, T.-P.; Belytschko, T., The extended/generalized finite element method: An overview of the method and its applications, Int. J. Numer. Methods Eng., 84, 3, 253-304 (2010) ·Zbl 1202.74169
[113]Gallo, C.; Manzini, G., 2D numerical modeling of bioremediation in heterogeneous saturated soils, Transp. Porous Media, 31, 1, 67-88 (1998)
[114]Gallo, C.; Manzini, G., A mixed finite element finite volume approach for solving biodegradation transport in groundwater, Int. J. Numer. Methods Fluids, 26, 5, 533-556 (1998) ·Zbl 0927.76048
[115]Ganzha, V.; Liska, R.; Shashkov, M.; Zenger, C., Support operator method for Laplace equation on unstructured triangular grid, Selcuk J. Appl. Math., 3, 21-48 (2002) ·Zbl 1020.65075
[116]Gasilov, V.; Goloviznin, V.; Kurtmullaev, R.; Semenov, V.; Favorskii, A.; Shashkov, M., The numerical simulation of the quasi spherical metal liner dynamics, (Proceedings of Second Int. Conf. on Megagauss Magnetic Field Generation and Related Topics. Proceedings of Second Int. Conf. on Megagauss Magnetic Field Generation and Related Topics, Washington D.C., USA (July 1979)) ·Zbl 0438.76100
[117]Gasilov, V.; Goloviznin, V.; Kurtmullaev, R.; Semenov, V.; Sosnin, N.; Tishkin, V.; Favorskii, A.; Shashkov, M., Numerical simulation of the compression of toroidal plasma by quasi-spherical liner (1979), Keldysh Inst. Appl. Math. USSR Acad. Sci., (in Russian) ·Zbl 0438.76100
[118]Gasilov, V.; Goloviznin, V.; Taran, M.; Tishkin, V.; Favorskii, A.; Shashkov, M., Numerical simulation of the Rayleigh-Taylor instability for incompressible flows (1979), Keldysh Inst. Appl. Math. USSR Acad. Sci., (in Russian) ·Zbl 0438.76042
[119]Geoffrey, G. P.; Ely, P.; Day, S. M.; Minster, J.-B., A support-operator method for viscoelastic wave modelling in 3-d heterogeneous media, Geophys. J. Int., 172, 1, 331-344 (2008)
[120]Geoffrey, G. P.; Ely, P.; Day, S. M.; Minster, J.-B., A support-operator method for 3-d rupture dynamics, Geophys. J. Int., 177, 1140-1150 (2009)
[121]Gerritsma, M., An introduction to a compatible spectral discretization method, Mech. Adv. Mat. Struct., 19, 1-3, 48-67 (2012)
[122]Girault, V., Theory of a finite difference method on irregular networks, SIAM J. Numer. Anal., 11, 2, 260-282 (1974) ·Zbl 0296.65049
[123]Girault, V.; Raviart, P.-A., Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics, vol. 5 (1986), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York, Tokyo ·Zbl 0585.65077
[124]Goloviznin, V. M.; Korshunov, V. K.; Sabitova, A.; Samarskaya, E. A., Stability of variational-difference schemes in gas-dynamics, Differ. Equ., 20, 7, 852-858 (1984) ·Zbl 0624.76094
[125]Goloviznin, V. M.; Korshunov, V. K.; Samarskii, A. A., Two-dimensional difference schemes of magneto-hydrodynamics on triangle Lagrange meshes, Comput. Math. Math. Phys., 22, 4, 160-178 (1982) ·Zbl 0518.76088
[126]Goloviznin, V. M.; Samarskii, A. A.; Favorskii, A. P., A variational approach to constructing finite-difference mathematical models in hydrodynamics, Sov. Phys. Dokl., 22, 8, 432-434 (1977), American Institute of Physics ·Zbl 0381.76051
[127]Goloviznin, V. M.; Samarskii, A. A.; Favorskii, A. P., Use of the principle of least action for constructing discrete mathematical models in magnetohydrodynamics, Sov. Phys. Dokl., 24, 6, 441-443 (1979), American Institute of Physics ·Zbl 0419.76086
[128]Guevara-Jordan, J. M.; Arteaga-Arispe, J., A second-order mimetic approach for tracer flow in oil reservoirs, (Latin American & Caribbean Petroleum Engineering Conference. Latin American & Caribbean Petroleum Engineering Conference, 15-18 April 2007, Buenos Aires, Argentina (2007)), published by Society of Petroleum Engineers Document ID 107366-MS
[129]Gyrya, V.; Lipnikov, K., High-order mimetic finite difference method for diffusion problems on polygonal meshes, J. Comput. Phys., 227, 8841-8854 (2008) ·Zbl 1152.65101
[130]Gyrya, V.; Lipnikov, K., Adaptation of mimetic finite difference discretization to reducing numerical dispersion in wave equation, (Proceedings of 10th Int. Conf. on the Mathematical and Numerical Aspects of Waves. Proceedings of 10th Int. Conf. on the Mathematical and Numerical Aspects of Waves, July 25-29, 2011, Vancouver, Canada (2011)), 343-346
[131]Gyrya, V.; Lipnikov, K., M-adaptation method for acoustic wave equation on rectangular meshes, J. Comput. Acoust., 20, 4, 125002 (2012), 10.11.32/S02118396X12500221 (23 p.)
[132]Gyrya, V.; Lipnikov, K., M-adaptation method for acoustic wave equation on square meshes (2012), Los Alamos National Laboratory, Technical report LA-UR 12-10047 ·Zbl 1360.65206
[133]Gyrya, V.; Lipnikov, K.; Aronson, I.; Berlyand, L., Effective shear viscosity and dynamics of suspensions of micro-swimmers at moderate concentrations, J. Math. Biol., 65, 5, 707-740 (2011) ·Zbl 1232.92032
[134]Herbin, R., An error estimate for a four point finite volume scheme for the convection-diffusion equation on a triangular mesh, Numer. Methods Partial Differ. Equ., 11, 2, 165-173 (1995) ·Zbl 0822.65085
[135]Herbin, R.; Hubert, F., Benchmark on discretization schemes for anisotropic diffusion problems on general grids, (Eymard, R.; Herard, J. M., Proceedings of Finite Volumes for Complex Applications V. Proceedings of Finite Volumes for Complex Applications V, Aussois, France (2008), Hermès) ·Zbl 1422.65314
[136]Hermeline, F., A finite volume method for the approximation of diffusion operators on distorted meshes, J. Comput. Phys., 160, 2, 481-499 (2000) ·Zbl 0949.65101
[137]Hermeline, F., Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes, Comput. Methods Appl. Mech. Eng., 192, 16-18, 1939-1959 (2003) ·Zbl 1037.65118
[138]Hiptmair, R., Canonical construction of finite elements, Math. Comput., 68, 228, 1325-1346 (1999) ·Zbl 0938.65132
[139]Hiptmair, R., Finite elements in computational electromagnetism, Acta Numer., 11, 237-339 (January 2002) ·Zbl 1123.78320
[140]Hirani, A. N., Discrete exterior calculus (2003), California Institute of Technology, PhD thesis
[141]Hyman, J.; Morel, J.; Shashkov, M.; Steinberg, S., Mimetic finite difference methods for diffusion equations, Comput. Geosci., 6, 333-352 (2002) ·Zbl 1023.76033
[142]Hyman, J.; Shashkov, M., Mimetic discretizations for Maxwellʼs equations and the equations of magnetic diffusion, Prog. Electromagn. Res., 32, 89-121 (2001)
[143]Hyman, J.; Shashkov, M.; Steinberg, S., The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials, J. Comput. Phys., 132, 130-148 (1997) ·Zbl 0881.65093
[144]Hyman, J. M.; Scovel, J. C., Deriving mimetic difference approximations do differential operators using algebraic topology (1988), Unpublished report of Los Alamos National Laboratory
[145]Hyman, J. M.; Shashkov, M., Adjoint operators for the natural discretizations of the divergence, gradient and curl on logically rectangular grids, Appl. Numer. Math., 25, 413-442 (1997) ·Zbl 1005.65024
[146]Hyman, J. M.; Shashkov, M., Natural discretizations for the divergence, gradient, and curl on logically rectangular grids, Comput. Math. Appl., 33, 4, 81-104 (1997) ·Zbl 0868.65006
[147]Hyman, J. M.; Shashkov, M., The approximation of boundary conditions for mimetic finite difference methods, Comput. Math. Appl., 36, 79-99 (1998) ·Zbl 0932.65111
[148]Hyman, J. M.; Shashkov, M., Mimetic discretizations for Maxwellʼs equations, J. Comput. Phys., 151, 881-909 (1999) ·Zbl 0956.78015
[149]Hyman, J. M.; Shashkov, M., The orthogonal decomposition theorems for mimetic finite difference methods, SIAM J. Numer. Anal., 36, 3, 788-818 (1999) ·Zbl 0972.65077
[150]Hyman, J. M.; Shashkov, M., Mimetic discretizations for Maxwellʼs equations and the equations of magnetic diffusion, Prog. Electromagn. Res., 32, 89-121 (2001)
[151]Hyman, J. M.; Shashkov, M.; Steinberg, S., The effect of inner products for discrete vector fields on the accuracy of mimetic finite difference methods, Comput. Math. Appl., 42, 1527-1547 (2001) ·Zbl 0998.65107
[152]Hyman, J. M.; Steinberg, S., The convergence of mimetic discretization for rough grids, Int. J. Comput. Math. Appl., 47, 10-11, 1565-1610 (2004) ·Zbl 1070.65114
[153]Isaev, V. N.; Sofronov, I. D., Construction of discrete models for equations of gas dynamics based on transformation of kinetic and internal energy of continuum medium, VANT - Questions of Atomic Science and Technology. VANT - Questions of Atomic Science and Technology, Methods and Codes for Numerical Solution of Problems of Mathematical Physics, 1, 15, 3-7 (1984), In Russian
[154]Perot, J. B.J. B.; Vidovic, D.; Wesseling, P., Mimetic reconstruction of vectors, (Arnold, D. N.; Bochev, P. B.; Lehoucq, R. B.; Nicolaides, R. A.; Shashkov, M., Compatible Spatial Discretizations. Compatible Spatial Discretizations, The IMA Volumes in Mathematics and Its Applications, vol. 142 (2006), Springer) ·Zbl 1110.65108
[155]Jackson, J. D., Classical Electrodynamics (1962), Wiley ·Zbl 0114.42903
[156]Kadomtsev, B. B., Tokamak Plasma: A Complex Physical System, (Plasma Physics) (1993), Taylor & Francis, 232 pp
[157]Kirpichenko, P.; Sokolov, V.; Tarasov, J.; Tishkin, V.; Turina, N.; Favorskii, A.; Shashkov, M., A numerical simulation of over-compressed detonation wave in a conic canal (1984), Preprint Keldysh Inst. Appl. Math. USSR Acad. Sci., (in Russian)
[158]Klausen, R. A.; Stephansen, A. F., Mimetic MPFA, (Proc. 11th European Conference on the Mathematics of Oil Recovery. Proc. 11th European Conference on the Mathematics of Oil Recovery, Bergen, Norway, A12, EAGE (2008))
[159]Knoll, D.; Morel, D.; Margolin, L. G.; Shashkov, M., Physically motivated discretization methods: A strategy for increased predictiveness, Los Alamos Sci., 29, 188-212 (2005)
[160]Koldoba, A. V.; Poveshenko, Yu. A.; Popov, Yu. P., The approximation of differential operators on non-orthogonal meshes, Differ. Equ., 19, 7, 919-927 (1983) ·Zbl 0538.65053
[161]Konovalov, A. N., Numerical methods for static problems of elasticity, Sib. Math. J., 36, 3, 491-505 (1995), translated from Russian, by Consultants Bureau, New York, Plenum Publishing Corp ·Zbl 0871.73077
[162]Korobitsin, V. A., Axisymmetric difference operators in an orthogonal coordinate system, Comput. Math. Math. Phys., 29, 6, 13-21 (1989) ·Zbl 0732.65105
[163]Korobitsin, V. A., Basic operators method for construction of difference schemes in curvilinear orthogonal coordinate system, Math. Model., 2, 6, 110-117 (1990) ·Zbl 0974.76544
[164]Korshiya, T. K.; Tishkin, V. F.; Favorskii, A. P.; Shashkov, M. J., Flow-variational difference schemes for calculating the diffusion of a magnetic field, Sov. Phys. Dokl., 25, 832-836 (1980)
[165]Kozhakhmedov, N. B., Solution of the first boundary-value problem for the Lameʼs equation by the application of invariant finite-difference operators, Differ. Equ., 6, 5, 694-705 (1970) ·Zbl 0264.65066
[166]Kreeft, J.; Gerritsma, M., Mixed mimetic spectral element method for Stokes flow: A pointwise divergence-free solution (May 2012), Cornell University Library
[167]Kreeft, J.; Gerritsma, M., A priori error estimates for compatible spectral discretization of the Stokes problem for all admissible boundary conditions (June 2012), Cornell University Library
[168]Kreeft, J.; Palha, A.; Gerritsma, M., Mimetic framework on curvilinear quadrilaterals of arbitrary order (November 2011), Cornell University Library
[169]Krell, S., Stabilized ddfv schemes for Stokes problem with variable viscosity on general 2d meshes, Numer. Methods Partial Differ. Equ., 27, 6, 1666-1706 (2011) ·Zbl 1426.76389
[170]Krell, S.; Manzini, G., The discrete duality finite volume method for Stokes equations on three-dimensional polyhedral meshes, SIAM J. Numer. Anal., 50, 2, 808-837 (2012) ·Zbl 1387.65113
[171]Krylov, A. L., Models with finite number of degrees of freedom for class of problems in mathematical physics. (Difference systems with conservation laws), Sov. Phys. Dokl., 7, 18-20 (1962) ·Zbl 0116.18001
[172]Krylov, A. L., Difference approximations to differential operators of mathematical physics, Sov. Math. Dokl., 9, 1, 138-142 (1968), Published by American Mathematical Society ·Zbl 0169.43001
[173]Kuznetsov, Y.; Lipnikov, K.; Shashkov, M., The mimetic finite difference method on polygonal meshes for diffusion-type problems, Comput. Geosci., 8, 301-324 (2004) ·Zbl 1088.76046
[174]Kuznetsov, Y.; Repin, S., New mixed finite element method on polygonal and polyhedral meshes, Russ. J. Numer. Anal. Math. Model., 18, 3, 261-278 (2003) ·Zbl 1048.65113
[175]Kuznetsov, Y.; Repin, S., Convergence analysis and error estimates for mixed finite element method on distorted meshes, J. Numer. Math., 13, 33-51 (2005) ·Zbl 1069.65114
[176]Landau, L. D.; Lifshitz, E. M., The Classical Theory of Fields (1951), Addison-Wesley ·Zbl 0043.19803
[177]Lebedev, V. I., Method of orthogonal projections for finite-difference analog of one system of equations, Rep. USSR Acad. Sci., 113, 6, 1206-1209 (1957), (in Russian) ·Zbl 0081.12604
[178]Lebedev, V. I., Difference analogues of orthogonal decompositions, basic differential operators and some boundary problems of mathematical physics. I, Comput. Math. Math. Phys., 4, 3, 69-92 (1964) ·Zbl 0158.34301
[179]Lebedev, V. I., Difference analogues of orthogonal decompositions, basic differential operators and some boundary problems of mathematical physics. II, Comput. Math. Math. Phys., 4, 4, 36-50 (1964)
[180]Lipnikov, K.; Manzini, G.; Brezzi, F.; Buffa, A., The mimetic finite difference method for 3D magnetostatics fields problems on polyhedral meshes, J. Comput. Phys., 230, 2, 305-328 (2011) ·Zbl 1207.78041
[181]Lipnikov, K.; Manzini, G.; Svyatskiy, D., Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems, J. Comput. Phys., 230, 7, 2620-2642 (2011) ·Zbl 1218.65117
[182]Lipnikov, K.; Manzini, G.; Svyatskiy, D., Monotonicity conditions in the mimetic finite difference method, (Fort, J.; Furst, J.; Halama, J.; Herbin, R.; Hubert, F., Springer Proceedings in Mathematics Finite Volumes for Complex Applications VI Problems & Perspectives, vol. 1 (2011)), 653-662 ·Zbl 1246.65203
[183]Lipnikov, K.; Morel, J.; Shashkov, M., Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes, J. Comput. Phys., 199, 589-597 (2004) ·Zbl 1057.65071
[184]Lipnikov, K.; Moulton, J. D.; Svyatskiy, D., A multilevel multiscale mimetic \((M^3)\) method for two-phase flows in porous media, J. Comput. Phys., 227, 6727-6753 (2008) ·Zbl 1338.76096
[185]Lipnikov, K.; Nelson, E.; Reynolds, J., Mimetic discretization of two-dimensional magnetic diffusion equations, J. Comput. Phys., 247 (2013), Technical report LAUR-12-22393, Los Alamos National Laboratory ·Zbl 1349.78095
[186]Lipnikov, K.; Shashkov, M., A framework for developing a mimetic tensor artificial viscosity for Lagrangian hydrocodes on arbitrary polygonal meshes, J. Comput. Phys., 229, 7911-7941 (2010) ·Zbl 1425.76186
[187]Lipnikov, K.; Shashkov, M.; Svyatskiy, D., The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes, J. Comput. Phys., 211, 473-491 (2006) ·Zbl 1120.65332
[188]Lipnikov, K.; Shashkov, M.; Yotov, I., Local flux mimetic finite difference methods, Numer. Math., 112, 1, 115-152 (2009) ·Zbl 1165.65063
[189]Liska, R.; Shashkov, M.; Ganza, V., Analysis and optimization of inner products for mimetic finite difference methods on triangular grid, Math. Comput. Simul., 67, 55-66 (2004) ·Zbl 1058.65115
[190]Liu, Y.; Chew, W. C., Time domain support operator method on unstructured grids, (Proceedings of Antennas and Propagation Society International Symposium, vol. 1. Proceedings of Antennas and Propagation Society International Symposium, vol. 1, 20-25 June 2004 (2004), IEEE), 53-60
[191]Liu, Y. A.; Chew, W. C., The unstructured support operator method and its application in waveguide problems, Microw. Opt. Technol. Lett., 46, 5, 495-500 (2005)
[192]Maikov, A. R.; Sveshnikov, A. G.; Yakunin, S. A., Mathematical modeling of microwave plasma generator, Comput. Math. Math. Phys., 25, 3, 149-157 (1985)
[193]Manzini, G.; Putti, M., Mesh locking effects in the finite volume solution of 2-d anisotropic diffusion equations, J. Comput. Phys., 220, 2, 751-771 (2007) ·Zbl 1109.65101
[194]Manzini, G.; Russo, A., A finite volume method for advection-diffusion problems in convection-dominated regimes, Comput. Methods Appl. Mech. Eng., 197, 13-16, 1242-1261 (2008) ·Zbl 1159.76356
[195]Margolin, L.; Shashkov, M., Using a curvilinear grid to construct symmetry-preserving discretization for Lagrangian gas dynamics, J. Comput. Phys., 149, 389-417 (1999) ·Zbl 0936.76057
[196]Margolin, L.; Shashkov, M.; Smolarkiewicz, P., A discrete operator calculus for finite difference approximations, Comput. Methods Appl. Mech. Eng., 187, 365-383 (2000) ·Zbl 0978.76063
[197]Margolin, L. G.; Adams, T. F., Spatial differencing for finite difference codes (1985), Technical report, Los Alamos National Laboratory Report - LA-10249
[198]Margolin, L. G.; Tarwater, A. E., A diffusion operator for lagrangian meshes, (Morgan, K.; Lewis, R. W.; Habashi, W. G., Proceedings of the Fifth International Conference on Numerical Methods in Thermal Problems Montreal. Proceedings of the Fifth International Conference on Numerical Methods in Thermal Problems Montreal, Montreal, Canada (June 1987)), 1252, see also Lawrence Livermore National Laboratory Report UCRL-95652
[199]Marrone, M., Computational aspects of the cell method in electrodynamics, (Teixeira, F. L., Geometric Methods in Computational Electromagnetics, PIER 32 (2001), EMW Publishing: EMW Publishing Cambridge, MA), 317-356
[200]Mattiussi, C., An analysis of finite volume, finite element, and finite difference methods using some concepts from algebraic topology, J. Comput. Phys., 133, 2, 289-309 (1997) ·Zbl 0878.65091
[201]Mattsson, K.; Nordström, J., Summation by parts operators for finite difference approximations of second derivatives, J. Comput. Phys., 199, 2, 503-540 (2004) ·Zbl 1071.65025
[202]Mikhailova, N.; Tishkin, V.; Turina, N.; Favorskii, A.; Shashkov, M., Numerical modeling of two-dimensional gas-dynamic flows on a variable-structure mesh, Comput. Math. Math. Phys., 26, 74-84 (1986) ·Zbl 0636.76067
[203]Morel, J.; Roberts, R.; Shashkov, M., A local support-operators diffusion discretization scheme for quadrilateral \(r - z\) meshes, J. Comput. Phys., 144, 17-51 (1998) ·Zbl 1395.76052
[204]Mousavi, S.; Sukumar, N., Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons, Comput. Mech., 47, 5, 535-554 (2011) ·Zbl 1221.65078
[205]Murphy, J. W.; Burrows, A., BETHE-Hydro: An arbitrary lagrangian-eulerian multidimensional hydrodynamics code for astrophysical simulations, Astrophys. J. Suppl. Ser., 179, 209-241 (2008)
[206]Myasnikov, V. P.; Zaslavsky, M. Yu.; Pergament, A. Kh., Averaging algorithms and the support-operator method for poroelasticity problems, Dokl. Phys., 49, 8, 483-487 (2004)
[207]Nedelec, J. C., Mixed finite elements in \(r3\), Numer. Math., 35, 315-341 (1980) ·Zbl 0419.65069
[208]Nicolaides, R. A.; Trapp, K. A., Covolume discretizations of differential forms, (Arnold, D.; Bochev, P.; Lehoucq, R.; Nicolaides, R.; Shashkov, M., Compatible Discretizations. Proceedings of IMA Hot Topics Workshop on Compatible Discretizations. Compatible Discretizations. Proceedings of IMA Hot Topics Workshop on Compatible Discretizations, IMA Vol. Math. Appl. (2006), Springer: Springer New York), 161-172 ·Zbl 1110.65024
[209]Nicolaides, R. A.; Wang, D.-Q., Convergence analysis of a covolume scheme for Maxwellʼs equations in three dimensions, Math. Comput., 67, 223, 947-963 (July 1998) ·Zbl 0907.65116
[210]Nicolaides, R. A., A discrete vector field theory and some applications, (Proceedings of IMACSʼ91 - 13th IMACS World Congress on Computation and Applied Mathematics. Proceedings of IMACSʼ91 - 13th IMACS World Congress on Computation and Applied Mathematics, Trinity College, Dublin, Ireland (1991)), 120-121
[211]Nicolaides, R. A., Direct discretization of planar div-curl problems, SIAM J. Numer. Anal., 29, 1, 32-56 (1992) ·Zbl 0745.65063
[212]Nicolaides, R. A.; Wu, X., Covolume solutions of three-dimensional div-curl equations, SIAM J. Numer. Anal., 34, 6, 2195-2203 (1997) ·Zbl 0889.35006
[213]Noh, W. F., Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux, J. Comput. Phys., 72, 78-120 (1987) ·Zbl 0619.76091
[214]Nordbotten, J. M.; Aavatsmark, I.; Eigestad, G. T., Monotonicity of control volume methods, Numer. Math., 106, 2, 255-288 (2007) ·Zbl 1215.76090
[215]Nuckolls, J.; Wood, L.; Thiessen, A.; Zimmerman, G., Laser compression of matter to super-high densities: Thermonuclear (CTR) applications, Nature, 239, 139-142 (1972)
[216]Olsson, P., Summation by parts, projections, and stability. I, Math. Comput., 64, 211, 1035-1065 (1995), S23-S26 ·Zbl 0828.65111
[217]Olsson, P., Summation by parts, projections, and stability. II, Math. Comput., 64, 212, 1473-1493 (1995) ·Zbl 0848.65064
[218]Palmer, R. S., Chain models and finite element analysis: an executable CHAINS formulation of plane stress, Comput. Aided Geom. Des., 12, 7, 733-770 (1995)
[219]Palmer, R. S.; Shapiro, V., Chain models of physical behavior for engineering analysis and design, Res. Eng. Des., 5, 161-184 (1993)
[220]Patterson, N.; Thornton, K., Investigation of mixed cell treatment via the support operator method, (53rd Annual Meeting of the APS Division of Plasma Physics. 53rd Annual Meeting of the APS Division of Plasma Physics, November 14-18 (2011), American Physical Society), Abstract #PP9.127
[221]Perot, J. B., Conservation properties of unstructured staggered mesh schemes, J. Comput. Phys., 159, 58-89 (2000) ·Zbl 0972.76068
[222]Perot, J. B.; Subramanian, V., Discrete calculus methods for diffusion, J. Comput. Phys., 224, 1, 59-81 (2007) ·Zbl 1120.65325
[223]Raviart, P. A.; Thomas, M., A mixed finite element method for 2-nd order elliptic problems, (Galligani, I.; Magenes, E., Mathematical Aspects of Finite Element Methods: Proceedings of the Conference. Mathematical Aspects of Finite Element Methods: Proceedings of the Conference, Rome, December 10-12, 1975. Mathematical Aspects of Finite Element Methods: Proceedings of the Conference. Mathematical Aspects of Finite Element Methods: Proceedings of the Conference, Rome, December 10-12, 1975, Lecture Notes in Mathematics, vol. 606 (1977), Springer-Verlag: Springer-Verlag New York/Berlin), 292-315 ·Zbl 0362.65089
[224]Ringler, T. D.; Randall, D. A., A potential enstrophy and energy conserving numerical scheme for solution of the shallow-water equations on a geodesic grid, Mon. Weather Rev., 130, 5, 1397-1410 (2002)
[225]Rose, M., A numerical scheme to solve \(div \underline{u} = \rho, curl \underline{u} = \zeta (1982)\), Technical report, ICASE Report No. 82-8
[226]Sabitova, A.; Samarskaya, E. A., Stability of variational-difference schemes for the problems of gas-dynamics with heat conduction, Differ. Equ., 21, 7, 861-864 (1985) ·Zbl 0661.76067
[227]Sadourny, R., The dynamics of finite-difference models of the Shallow-Water equations, J. Atmos. Sci., 32, 680-689 (1975)
[228]Samarski, A. A.; Tishkin, V. F.; Favorksii, A. P.; Shashkov, M. Yu., Employment of the reference-operator methods in the construction of finite difference analogs of tensor operations, Differ. Equ., 18, 7, 881-885 (1983) ·Zbl 0532.65069
[229]Samarskii, A. A., Introduction to Theory of Difference Schemes (1971), Nauka, (in Russian, 552 pp.)
[230]Samarskii, A. A., The Theory of Difference Schemes (1977), Nauka, in Russian, 656 pp ·Zbl 0368.65031
[231]Samarskii, A. A., The Theory of Difference Schemes, Pure and Applied Mathematics. A Series of Monographs and Textbooks (2001), CRC Press, 761 pp ·Zbl 0971.65076
[232]Samarskii, A. A.; Favorskii, A. P.; Tishkin, V. F.; Shashkov, M. Yu., Operator Variational Difference Scheme for a Mathematical Physics Equations (1983), Tbilisi State University: Tbilisi State University Tbilisi, Georgia, USSR, (in Russian, 143 pp.) ·Zbl 0574.49026
[233]Samarskii, A. A.; Gulin, A. V., Stability of Difference Schemes (1973), Nauka, (in Russian, 416 pp.) ·Zbl 0303.65079
[234]Samarskii, A. A.; Popov, Yu. P., Finite Difference Schemes for Gas Dynamics (1975), Nauka, (in Russian, 352 pp)
[235]Samarskii, A. A.; Tishkin, V. F.; Favorskii, A. P.; Shashkov, M. Yu., On the representation of finite difference schemes of mathematical physics in operator form, Sov. Phys. Dokl., 26, 6, 590-592 (1981), American Institute of Physics ·Zbl 0532.65068
[236]Samarskii, A. A.; Tishkin, V. F.; Favorskii, A. P.; Shashkov, M. Yu., Operational finite-difference schemes, Differ. Equ., 17, 854-862 (1981) ·Zbl 0485.65060
[237]Shashkov, M., Conservative Finite Difference Methods (1996), CRC Press: CRC Press Boca Raton, FL ·Zbl 0844.65067
[238]Shashkov, M.; Solovʼov, A., Numerical simulation of two-dimensional flows by the free-lagrangian method (1991), Report of Mathematisces Institut, der Techniscen Universitat Munchen, Technical report TUM-M9150
[239]Shashkov, M.; Steinberg, S., Support-operator finite-difference algorithms for general elliptic problems, J. Comput. Phys., 118, 131-151 (1995) ·Zbl 0824.65101
[240]Shashkov, M.; Steinberg, S., Solving diffusion equations with rough coefficients in rough grids, J. Comput. Phys., 129, 383-405 (1996) ·Zbl 0874.65062
[241]Silin, D. B.; Patzek, T. W., Support-operators method in the identification of permeability tensor orientation, SPE J., 385-398 (2001), presented at the 2000 SPE/DOE Improved Oil Recovery Symposium, Tulsa, 3-5 April 2000
[242]Solovʼev, A.; Shashkov, M., Difference scheme for the “Dirichlet particles” method in cylindrical coordinates, conserving symmetry of gas-dynamical flow, Differ. Equ., 24, 7, 817-823 (1988) ·Zbl 0674.76053
[243]Solovʼev, A.; Solovʼeva, E.; Tishkin, V.; Favorskii, A.; Shashkov, M., Approximation of finite-difference operators on a mesh of Dirichlet cells, Differ. Equ., 22, 7, 863-872 (1986) ·Zbl 0616.65021
[244]Solovʼov, A.; Shashkov, A., Finite-difference schemes for solution of heat equation on Dirichlet grid (1991), U.S.S.R. Academy of Sciences: U.S.S.R. Academy of Sciences Moscow, (in Russian)
[245]Solovʼova, E.; Shashkov, M., Application of the basic operator method for difference scheme construction on non-matching grids (1984), Keldysh Inst. Appl. Math. USSR Acad. Sci., (in Russian)
[246]Song, S.; Dong, T.; Zhou, Y.; Yuen, D. A.; Zhonghua, L., Seismic wave propagation simulation using support operator method on multi-gpu system (2011), Minnesota Supercomputing Institute, University of Minnesota, Technical report 34
[247]Sorokin, S. B., The method of step-by-step inversion for numerical solution of the biharmonic equation, Sib. Math. J., 36, 3, 569-573 (1995) ·Zbl 0858.65080
[248]Stratton, J. A., Electromagnetic Theory (1941), McGraw-Hill: McGraw-Hill New York ·JFM 67.1119.01
[249]Subramanian, V.; Perot, J. B., Higher order mimetic methods for unstructured meshes, J. Comput. Phys., 219, 68-85 (2006) ·Zbl 1105.65101
[250]Sukumar, N.; Malsch, E., Recent advances in the construction of polygonal finite element interpolants, Arch. Comput. Methods Eng., 13, 1, 129-163 (2006) ·Zbl 1101.65108
[251]Sukumar, N.; Tabarraei, A., Conforming polygonal finite elements, Int. J. Numer. Methods Eng., 61, 2045-2066 (2004) ·Zbl 1073.65563
[252]Svärd, M.; Mattsson, K.; Nordström, J., Steady-state computations using summation-by-parts operators, J. Sci. Comput., 24, 1, 79-95 (2005) ·Zbl 1080.76044
[253]Tabarraei, A.; Sukumar, N., Extended finite element method on polygonal and quadtree meshes, Comput. Methods Appl. Mech. Eng., 197, 5, 425-438 (2007) ·Zbl 1169.74634
[254]Taflove, A., Application of the finite-difference time-domain method to sinusoidal steady state electromagnetic penetration problems, IEEE Trans. Electromagn. Compat., 22, 3, 191-202 (1980)
[255]Taran, M.; Tishkin, V.; Favorskii, A.; Feoktistov, L.; Shashkov, M., On simulation of the collapse of a quasi-spherical target in a hard cone (1980), Keldysh Inst. Appl. Math. USSR Acad. Sci., (in Russian)
[256]Teixeira, F. L., Time-domain finite-difference and finite-element methods for Maxwell equations in complex media, IEEE Trans. Antennas Propag., 56, 8, 2150-2166 (2008) ·Zbl 1369.78699
[257]Thuburn, J.; Cotter, C. J., A framework for mimetic discretization of the rotating shallow-water equations on arbitrary polygonal grids, SIAM J. Sci. Comput., 34, 3, B203-B225 (2012) ·Zbl 1246.65155
[258]Tikhonov, A. N.; Samarskii, A. A., Homogeneous difference schemes, Comput. Math. Math. Phys., 1, 1, 5-67 (1962) ·Zbl 0131.34102
[259]Tishkin, V. F., Variational-difference schemes for the dynamical equations for deformable media, Differ. Equ., 21, 7, 865-870 (1985) ·Zbl 0581.73023
[260]Tishkin, V. F.; Favorskii, A. P.; Shashkov, M. Yu., Variational-difference schemes for the heat conduction equation on non-regular grids, Sov. Phys. Dokl., 24, 6, 446-450 (1979), American Institute of Physics ·Zbl 0435.65081
[261]Tishkin, V. F.; Shashkov, M. Yu., Numerical Modeling of Physical Experiment (1987), Central Institute for Information, Technol. Econ. Res. At. Sci. Technol., (in Russian, 72 pp.)
[262]Tonti, E., Sulla struttura formale delle teorie fisiche, Rend. Semin. Mat. Fis. Milano, 46, 163-257 (1978), 1976
[263]Tonti, E., The reason for analogies between physical theories, Appl. Math. Model., 1, 1, 37-50 (1976/77)
[264]Tonti, E., Finite formulation of the electromagnetic field, (Teixeira, F. L., Geometric Methods in Computational Electromagnetics, PIER 32 (2001), EMW Publishing: EMW Publishing Cambridge, MA), 1-44
[265]Trapp, K. A., Inner products in covolume and mimetic methods, ESAIM Math. Model. Numer. Anal., 42, 941-959 (2008) ·Zbl 1155.65103
[266]Velarde, G.; Ronen, R. Y.; Martinez-Val, J. M., Nuclear Fusion by Inertial Confinement: A Comprehensive Treatise (1992), CRC Press, 768 pp
[267]Volkova, R.; Kruglikova, L.; Misheskaya, E.; Tishkin, V.; Turina, N.; Favorskii, A.; Shashkov, M., SAFRA. Functional filling. The program for solving 2D problems of the controlled laser fusion (1985), Keldysh Inst. Appl. Math. USSR Acad. Sci., (in Russian)
[268]Wachspress, E., A Rational Finite Element Basis (1975), Academic Press ·Zbl 0322.65001
[269]Walters, W. P.; Zukas, J. A., Fundamentals of Shaped Charges (1989), John Wiley & Sons Inc.
[270]Weiland, T., A discretization method for the solution of Maxwellʼs equations for six-component fields, Electron. Commun. AEU, 31, 3, 116-120 (1977)
[271]Wheeler, M. F.; Yotov, I., A multipoint flux mixed finite element method, SIAM J. Numer. Anal., 44, 2082-2106 (2006) ·Zbl 1121.76040
[272]Whitney, H., Geometric Integration Theory (1957), Princeton University Press ·Zbl 0083.28204
[273]Wilkins, M. L., Use of artificial viscosity in multidimensional shock wave problems, J. Comput. Phys., 36, 281-303 (1980) ·Zbl 0436.76040
[274]Yee, K. S., Numerical solution of initial boundary value problems involving Maxwellʼs equations in isotropic media, IEEE Trans. Antennas Propag., 14, 3, 302-307 (1966) ·Zbl 1155.78304
[275]Yue, B.; Guddati, M. N., Dispersion-reducing finite elements for transient acoustics, J. Acoust. Soc. Am., 118, 2132-2141 (2005)
[276]Zukas, J. A., High Velocity Impact Dynamics (1990), Wiley, 935 pp
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp