[1] | Akasaka, Tatsuya; Kashiwara, Masaki, Finite-dimensional representations of quantum affine algebras, Publ. Res. Inst. Math. Sci., 33, 5, 839-867 (1997) ·Zbl 0915.17011 ·doi:10.2977/prims/1195145020 |
[2] | Ariki, Susumu, On the decomposition numbers of the Hecke algebra of \(G(m,1,n)\), J. Math. Kyoto Univ., 36, 4, 789-808 (1996) ·Zbl 0888.20011 |
[3] | Auslander, Maurice; Reiten, Idun; Smal{\o }, Sverre O., Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics 36, xiv+423 pp. (1995), Cambridge University Press, Cambridge ·Zbl 0834.16001 ·doi:10.1017/CBO9780511623608 |
[4] | Assem, Ibrahim; Simson, Daniel; Skowro{\'n}ski, Andrzej, Elements of the representation theory of associative algebras. Vol. 1, London Mathematical Society Student Texts 65, x+458 pp. (2006), Cambridge University Press, Cambridge ·Zbl 1092.16001 ·doi:10.1017/CBO9780511614309 |
[5] | B{\'e}dard, Robert, On commutation classes of reduced words in Weyl groups, European J. Combin., 20, 6, 483-505 (1999) ·Zbl 0934.05126 ·doi:10.1006/eujc.1999.0296 |
[6] | Benkart, Georgia; Kang, Seok-Jin; Oh, Se-jin; Park, Euiyong, Construction of irreducible representations over Khovanov-Lauda-Rouquier algebras of finite classical type, Int. Math. Res. Not. IMRN, 5, 1312-1366 (2014) ·Zbl 1355.17009 |
[7] | Berenstein, Arkady; Fomin, Sergey; Zelevinsky, Andrei, Parametrizations of canonical bases and totally positive matrices, Adv. Math., 122, 1, 49-149 (1996) ·Zbl 0966.17011 ·doi:10.1006/aima.1996.0057 |
[8] | Bourbaki, N., \'El\'ements de math\'ematique. Fasc. XXXIV. Groupes et alg\`“ebres de Lie. Chapitre IV: Groupes de Coxeter et syst\`emes de Tits. Chapitre V: Groupes engendr\'”es par des r\'eflexions. Chapitre VI: syst\`“emes de racines, Actualit\'”es Scientifiques et Industrielles, No. 1337, 288 pp. (loose errata) pp. (1968), Hermann, Paris ·Zbl 0186.33001 |
[9] | Brenner, Sheila, A combinatorial characterisation of finite Auslander-Reiten quivers. Representation theory, I, Ottawa, Ont., 1984, Lecture Notes in Math. 1177, 13-49 (1986), Springer, Berlin ·Zbl 0644.16017 ·doi:10.1007/BFb0075256 |
[10] | Brundan, Jonathan; Kleshchev, Alexander, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math., 178, 3, 451-484 (2009) ·Zbl 1201.20004 ·doi:10.1007/s00222-009-0204-8 |
[11] | Brundan, Jonathan; Kleshchev, Alexander, Graded decomposition numbers for cyclotomic Hecke algebras, Adv. Math., 222, 6, 1883-1942 (2009) ·Zbl 1241.20003 ·doi:10.1016/j.aim.2009.06.018 |
[12] | Brundan, Jonathan; Kleshchev, Alexander; McNamara, Peter J., Homological properties of finite-type Khovanov-Lauda-Rouquier algebras, Duke Math. J., 163, 7, 1353-1404 (2014) ·Zbl 1314.16005 ·doi:10.1215/00127094-2681278 |
[13] | Buan, Aslak Bakke; Marsh, Robert; Reineke, Markus; Reiten, Idun; Todorov, Gordana, Tilting theory and cluster combinatorics, Adv. Math., 204, 2, 572-618 (2006) ·Zbl 1127.16011 ·doi:10.1016/j.aim.2005.06.003 |
[14] | Chari, Vyjayanthi; Pressley, Andrew, Yangians, integrable quantum systems and Dorey’s rule, Comm. Math. Phys., 181, 2, 265-302 (1996) ·Zbl 0869.17015 |
[15] | Cherednik, I. V., A new interpretation of Gel\cprime fand-Tzetlin bases, Duke Math. J., 54, 2, 563-577 (1987) ·Zbl 0645.17006 ·doi:10.1215/S0012-7094-87-05423-8 |
[16] | Date, Etsur{\=o}; Okado, Masato, Calculation of excitation spectra of the spin model related with the vector representation of the quantized affine algebra of type \(A^{(1)}_n\), Internat. J. Modern Phys. A, 9, 3, 399-417 (1994) ·Zbl 0905.17004 ·doi:10.1142/S0217751X94000194 |
[17] | Frenkel, Edward; Mukhin, Evgeny, Combinatorics of \(q\)-characters of finite-dimensional representations of quantum affine algebras, Comm. Math. Phys., 216, 1, 23-57 (2001) ·Zbl 1051.17013 ·doi:10.1007/s002200000323 |
[18] | Gabriel, Peter, Auslander-Reiten sequences and representation-finite algebras. Representation theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Math. 831, 1-71 (1980), Springer, Berlin ·Zbl 0445.16023 |
[19] | Ginzburg, Victor; Reshetikhin, Nicolai; Vasserot, {\'E}ric, Quantum groups and flag varieties. Mathematical aspects of conformal and topological field theories and quantum groups, South Hadley, MA, 1992, Contemp. Math. 175, 101-130 (1994), Amer. Math. Soc., Providence, RI ·Zbl 0818.17018 ·doi:10.1090/conm/175/01840 |
[20] | Happel, Dieter, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series 119, x+208 pp. (1988), Cambridge University Press, Cambridge ·Zbl 0635.16017 ·doi:10.1017/CBO9780511629228 |
[21] | Hernandez, David, Kirillov-Reshetikhin conjecture: the general case, Int. Math. Res. Not. IMRN, 1, 149-193 (2010) ·Zbl 1242.17017 ·doi:10.1093/imrn/rnp121 |
[22] | Hernandez, David; Leclerc, Bernard, Quantum Grothendieck rings and derived Hall algebras, J. Reine Angew. Math., 701, 77-126 (2015) ·Zbl 1315.17011 ·doi:10.1515/crelle-2013-0020 |
[23] | Hill, David; Melvin, George; Mondragon, Damien, Representations of quiver Hecke algebras via Lyndon bases, J. Pure Appl. Algebra, 216, 5, 1052-1079 (2012) ·Zbl 1264.20006 ·doi:10.1016/j.jpaa.2011.12.015 |
[24] | Hu, Jun; Mathas, Andrew, Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type \(A\), Adv. Math., 225, 2, 598-642 (2010) ·Zbl 1230.20005 ·doi:10.1016/j.aim.2010.03.002 |
[25] | Kac, Victor G., Infinite-dimensional Lie algebras, xxii+400 pp. (1990), Cambridge University Press, Cambridge ·Zbl 0716.17022 ·doi:10.1017/CBO9780511626234 |
[26] | Kang, Seok-Jin; Kashiwara, Masaki, Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras, Invent. Math., 190, 3, 699-742 (2012) ·Zbl 1280.17017 ·doi:10.1007/s00222-012-0388-1 |
[27] | KKK13a S.-J. Kang, M. Kashiwara, and M. Kim, Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, arXiv:1304.0323 [math.RT]. |
[28] | Kang, Seok-Jin; Kashiwara, Masaki; Kim, Myungho, Symmetric quiver Hecke algebras and \(R\)-matrices of quantum affine algebras, II, Duke Math. J., 164, 8, 1549-1602 (2015) ·Zbl 1323.81046 ·doi:10.1215/00127094-3119632 |
[29] | Kang, Seok-Jin; Kashiwara, Masaki; Kim, Myungho; Oh, Se-jin, Simplicity of heads and socles of tensor products, Compos. Math., 151, 2, 377-396 (2015) ·Zbl 1366.17014 ·doi:10.1112/S0010437X14007799 |
[30] | KKKO14b Seok-Jin Kang, Masaki Kashiwara, Myungho Kim, and Se-jin Oh, Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras IV, arXiv:1502.07415 [math.RT]. ·Zbl 1354.81030 |
[31] | Kang, Seok-Jin; Kashiwara, Masaki; Oh, Se-jin, Supercategorification of quantum Kac-Moody algebras, Adv. Math., 242, 116-162 (2013) ·Zbl 1304.17012 ·doi:10.1016/j.aim.2013.04.008 |
[32] | Kang, Seok-Jin; Park, Euiyong, Irreducible modules over Khovanov-Lauda-Rouquier algebras of type \(A_n\) and semistandard tableaux, J. Algebra, 339, 223-251 (2011) ·Zbl 1290.17008 ·doi:10.1016/j.jalgebra.2011.05.013 |
[33] | Kashiwara, M., On crystal bases of the \(Q\)-analogue of universal enveloping algebras, Duke Math. J., 63, 2, 465-516 (1991) ·Zbl 0739.17005 ·doi:10.1215/S0012-7094-91-06321-0 |
[34] | Kashiwara, Masaki, The crystal base and Littelmann’s refined Demazure character formula, Duke Math. J., 71, 3, 839-858 (1993) ·Zbl 0794.17008 ·doi:10.1215/S0012-7094-93-07131-1 |
[35] | Kashiwara, Masaki, On level-zero representations of quantized affine algebras, Duke Math. J., 112, 1, 117-175 (2002) ·Zbl 1033.17017 ·doi:10.1215/S0012-9074-02-11214-9 |
[36] | Kashiwara, Masaki; Nakashima, Toshiki, Crystal graphs for representations of the \(q\)-analogue of classical Lie algebras, J. Algebra, 165, 2, 295-345 (1994) ·Zbl 0808.17005 ·doi:10.1006/jabr.1994.1114 |
[37] | Kato, Syu, Poincar\'e-Birkhoff-Witt bases and Khovanov-Lauda-Rouquier algebras, Duke Math. J., 163, 3, 619-663 (2014) ·Zbl 1292.17012 ·doi:10.1215/00127094-2405388 |
[38] | Khovanov, Mikhail; Lauda, Aaron D., A diagrammatic approach to categorification of quantum groups. I, Represent. Theory, 13, 309-347 (2009) ·Zbl 1188.81117 ·doi:10.1090/S1088-4165-09-00346-X |
[39] | Khovanov, Mikhail; Lauda, Aaron D., A diagrammatic approach to categorification of quantum groups II, Trans. Amer. Math. Soc., 363, 5, 2685-2700 (2011) ·Zbl 1214.81113 ·doi:10.1090/S0002-9947-2010-05210-9 |
[40] | Kleshchev, Alexander; Ram, Arun, Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words, Math. Ann., 349, 4, 943-975 (2011) ·Zbl 1267.20010 ·doi:10.1007/s00208-010-0543-1 |
[41] | Lascoux, Alain; Leclerc, Bernard; Thibon, Jean-Yves, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys., 181, 1, 205-263 (1996) ·Zbl 0874.17009 |
[42] | Lauda, Aaron D.; Vazirani, Monica, Crystals from categorified quantum groups, Adv. Math., 228, 2, 803-861 (2011) ·Zbl 1246.17017 ·doi:10.1016/j.aim.2011.06.009 |
[43] | McNamara, Peter J., Finite dimensional representations of Khovanov-Lauda-Rouquier algebras I: Finite type, J. Reine Angew. Math., 707, 103-124 (2015) ·Zbl 1378.17018 ·doi:10.1515/crelle-2013-0075 |
[44] | Oh, Se-jin, The denominators of normalized \(R\)-matrices of types \(A_{2n-1}^{(2)}, A_{2n}^{(2)}, B_n^{(1)}\) and \(D_{n+1}^{(2)}\), Publ. Res. Inst. Math. Sci., 51, 4, 709-744 (2015) ·Zbl 1337.81080 |
[45] | Oh14D Se-jin Oh, Auslander-Reiten quiver of type D and generalized quantum affine Schur-Weyl duality, arXiv:1406.4555 [math.RT]. ·Zbl 1338.05274 |
[46] | Papi, Paolo, A characterization of a special ordering in a root system, Proc. Amer. Math. Soc., 120, 3, 661-665 (1994) ·Zbl 0799.20037 ·doi:10.2307/2160454 |
[47] | Ringel, Claus Michael, PBW-bases of quantum groups, J. Reine Angew. Math., 470, 51-88 (1996) ·Zbl 0840.17010 ·doi:10.1515/crll.1996.470.51 |
[48] | R08 R. Rouquier, 2 Kac-Moody algebras, arXiv:0812.5023 (2008). |
[49] | Varagnolo, M.; Vasserot, E., Canonical bases and KLR-algebras, J. Reine Angew. Math., 659, 67-100 (2011) ·Zbl 1229.17019 ·doi:10.1515/CRELLE.2011.068 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.