Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Auslander-Reiten quiver of type A and generalized quantum affine Schur-Weyl duality.(English)Zbl 1351.05230

Summary: The quiver Hecke algebra \( R\) can be also understood as a generalization of the affine Hecke algebra of type \( A\) in the context of the quantum affine Schur-Weyl duality by the results ofS.-J. Kang et al. [Proc. Lond. Math. Soc. (3) 111, No. 2, 420–444 (2015;Zbl 1322.81056)]. On the other hand, it is well known that the Auslander-Reiten (AR) quivers \( \Gamma_Q\) of finite simply-laced types have a deep relation with the positive roots systems of the corresponding types. In this paper, we present explicit combinatorial descriptions for the AR-quivers \( \Gamma_Q\) of finite type \( A\). Using the combinatorial descriptions, we can investigate relations between finite dimensional module categories over the quantum affine algebra \( U^\prime_q(A_n^{(i)})\) \( (i=1,2)\) and finite dimensional graded module categories over the quiver Hecke algebra \( R_{A_n}\) associated to \( A_n\) through the generalized quantum affine Schur-Weyl duality functor.

MSC:

05E10 Combinatorial aspects of representation theory
16T30 Connections of Hopf algebras with combinatorics
17B37 Quantum groups (quantized enveloping algebras) and related deformations
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
20C08 Hecke algebras and their representations
16G20 Representations of quivers and partially ordered sets

Citations:

Zbl 1322.81056

Cite

References:

[1]Akasaka, Tatsuya; Kashiwara, Masaki, Finite-dimensional representations of quantum affine algebras, Publ. Res. Inst. Math. Sci., 33, 5, 839-867 (1997) ·Zbl 0915.17011 ·doi:10.2977/prims/1195145020
[2]Ariki, Susumu, On the decomposition numbers of the Hecke algebra of \(G(m,1,n)\), J. Math. Kyoto Univ., 36, 4, 789-808 (1996) ·Zbl 0888.20011
[3]Auslander, Maurice; Reiten, Idun; Smal{\o }, Sverre O., Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics 36, xiv+423 pp. (1995), Cambridge University Press, Cambridge ·Zbl 0834.16001 ·doi:10.1017/CBO9780511623608
[4]Assem, Ibrahim; Simson, Daniel; Skowro{\'n}ski, Andrzej, Elements of the representation theory of associative algebras. Vol. 1, London Mathematical Society Student Texts 65, x+458 pp. (2006), Cambridge University Press, Cambridge ·Zbl 1092.16001 ·doi:10.1017/CBO9780511614309
[5]B{\'e}dard, Robert, On commutation classes of reduced words in Weyl groups, European J. Combin., 20, 6, 483-505 (1999) ·Zbl 0934.05126 ·doi:10.1006/eujc.1999.0296
[6]Benkart, Georgia; Kang, Seok-Jin; Oh, Se-jin; Park, Euiyong, Construction of irreducible representations over Khovanov-Lauda-Rouquier algebras of finite classical type, Int. Math. Res. Not. IMRN, 5, 1312-1366 (2014) ·Zbl 1355.17009
[7]Berenstein, Arkady; Fomin, Sergey; Zelevinsky, Andrei, Parametrizations of canonical bases and totally positive matrices, Adv. Math., 122, 1, 49-149 (1996) ·Zbl 0966.17011 ·doi:10.1006/aima.1996.0057
[8]Bourbaki, N., \'El\'ements de math\'ematique. Fasc. XXXIV. Groupes et alg\`“ebres de Lie. Chapitre IV: Groupes de Coxeter et syst\`emes de Tits. Chapitre V: Groupes engendr\'”es par des r\'eflexions. Chapitre VI: syst\`“emes de racines, Actualit\'”es Scientifiques et Industrielles, No. 1337, 288 pp. (loose errata) pp. (1968), Hermann, Paris ·Zbl 0186.33001
[9]Brenner, Sheila, A combinatorial characterisation of finite Auslander-Reiten quivers. Representation theory, I, Ottawa, Ont., 1984, Lecture Notes in Math. 1177, 13-49 (1986), Springer, Berlin ·Zbl 0644.16017 ·doi:10.1007/BFb0075256
[10]Brundan, Jonathan; Kleshchev, Alexander, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math., 178, 3, 451-484 (2009) ·Zbl 1201.20004 ·doi:10.1007/s00222-009-0204-8
[11]Brundan, Jonathan; Kleshchev, Alexander, Graded decomposition numbers for cyclotomic Hecke algebras, Adv. Math., 222, 6, 1883-1942 (2009) ·Zbl 1241.20003 ·doi:10.1016/j.aim.2009.06.018
[12]Brundan, Jonathan; Kleshchev, Alexander; McNamara, Peter J., Homological properties of finite-type Khovanov-Lauda-Rouquier algebras, Duke Math. J., 163, 7, 1353-1404 (2014) ·Zbl 1314.16005 ·doi:10.1215/00127094-2681278
[13]Buan, Aslak Bakke; Marsh, Robert; Reineke, Markus; Reiten, Idun; Todorov, Gordana, Tilting theory and cluster combinatorics, Adv. Math., 204, 2, 572-618 (2006) ·Zbl 1127.16011 ·doi:10.1016/j.aim.2005.06.003
[14]Chari, Vyjayanthi; Pressley, Andrew, Yangians, integrable quantum systems and Dorey’s rule, Comm. Math. Phys., 181, 2, 265-302 (1996) ·Zbl 0869.17015
[15]Cherednik, I. V., A new interpretation of Gel\cprime fand-Tzetlin bases, Duke Math. J., 54, 2, 563-577 (1987) ·Zbl 0645.17006 ·doi:10.1215/S0012-7094-87-05423-8
[16]Date, Etsur{\=o}; Okado, Masato, Calculation of excitation spectra of the spin model related with the vector representation of the quantized affine algebra of type \(A^{(1)}_n\), Internat. J. Modern Phys. A, 9, 3, 399-417 (1994) ·Zbl 0905.17004 ·doi:10.1142/S0217751X94000194
[17]Frenkel, Edward; Mukhin, Evgeny, Combinatorics of \(q\)-characters of finite-dimensional representations of quantum affine algebras, Comm. Math. Phys., 216, 1, 23-57 (2001) ·Zbl 1051.17013 ·doi:10.1007/s002200000323
[18]Gabriel, Peter, Auslander-Reiten sequences and representation-finite algebras. Representation theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Math. 831, 1-71 (1980), Springer, Berlin ·Zbl 0445.16023
[19]Ginzburg, Victor; Reshetikhin, Nicolai; Vasserot, {\'E}ric, Quantum groups and flag varieties. Mathematical aspects of conformal and topological field theories and quantum groups, South Hadley, MA, 1992, Contemp. Math. 175, 101-130 (1994), Amer. Math. Soc., Providence, RI ·Zbl 0818.17018 ·doi:10.1090/conm/175/01840
[20]Happel, Dieter, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series 119, x+208 pp. (1988), Cambridge University Press, Cambridge ·Zbl 0635.16017 ·doi:10.1017/CBO9780511629228
[21]Hernandez, David, Kirillov-Reshetikhin conjecture: the general case, Int. Math. Res. Not. IMRN, 1, 149-193 (2010) ·Zbl 1242.17017 ·doi:10.1093/imrn/rnp121
[22]Hernandez, David; Leclerc, Bernard, Quantum Grothendieck rings and derived Hall algebras, J. Reine Angew. Math., 701, 77-126 (2015) ·Zbl 1315.17011 ·doi:10.1515/crelle-2013-0020
[23]Hill, David; Melvin, George; Mondragon, Damien, Representations of quiver Hecke algebras via Lyndon bases, J. Pure Appl. Algebra, 216, 5, 1052-1079 (2012) ·Zbl 1264.20006 ·doi:10.1016/j.jpaa.2011.12.015
[24]Hu, Jun; Mathas, Andrew, Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type \(A\), Adv. Math., 225, 2, 598-642 (2010) ·Zbl 1230.20005 ·doi:10.1016/j.aim.2010.03.002
[25]Kac, Victor G., Infinite-dimensional Lie algebras, xxii+400 pp. (1990), Cambridge University Press, Cambridge ·Zbl 0716.17022 ·doi:10.1017/CBO9780511626234
[26]Kang, Seok-Jin; Kashiwara, Masaki, Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras, Invent. Math., 190, 3, 699-742 (2012) ·Zbl 1280.17017 ·doi:10.1007/s00222-012-0388-1
[27]KKK13a S.-J. Kang, M. Kashiwara, and M. Kim, Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, arXiv:1304.0323 [math.RT].
[28]Kang, Seok-Jin; Kashiwara, Masaki; Kim, Myungho, Symmetric quiver Hecke algebras and \(R\)-matrices of quantum affine algebras, II, Duke Math. J., 164, 8, 1549-1602 (2015) ·Zbl 1323.81046 ·doi:10.1215/00127094-3119632
[29]Kang, Seok-Jin; Kashiwara, Masaki; Kim, Myungho; Oh, Se-jin, Simplicity of heads and socles of tensor products, Compos. Math., 151, 2, 377-396 (2015) ·Zbl 1366.17014 ·doi:10.1112/S0010437X14007799
[30]KKKO14b Seok-Jin Kang, Masaki Kashiwara, Myungho Kim, and Se-jin Oh, Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras IV, arXiv:1502.07415 [math.RT]. ·Zbl 1354.81030
[31]Kang, Seok-Jin; Kashiwara, Masaki; Oh, Se-jin, Supercategorification of quantum Kac-Moody algebras, Adv. Math., 242, 116-162 (2013) ·Zbl 1304.17012 ·doi:10.1016/j.aim.2013.04.008
[32]Kang, Seok-Jin; Park, Euiyong, Irreducible modules over Khovanov-Lauda-Rouquier algebras of type \(A_n\) and semistandard tableaux, J. Algebra, 339, 223-251 (2011) ·Zbl 1290.17008 ·doi:10.1016/j.jalgebra.2011.05.013
[33]Kashiwara, M., On crystal bases of the \(Q\)-analogue of universal enveloping algebras, Duke Math. J., 63, 2, 465-516 (1991) ·Zbl 0739.17005 ·doi:10.1215/S0012-7094-91-06321-0
[34]Kashiwara, Masaki, The crystal base and Littelmann’s refined Demazure character formula, Duke Math. J., 71, 3, 839-858 (1993) ·Zbl 0794.17008 ·doi:10.1215/S0012-7094-93-07131-1
[35]Kashiwara, Masaki, On level-zero representations of quantized affine algebras, Duke Math. J., 112, 1, 117-175 (2002) ·Zbl 1033.17017 ·doi:10.1215/S0012-9074-02-11214-9
[36]Kashiwara, Masaki; Nakashima, Toshiki, Crystal graphs for representations of the \(q\)-analogue of classical Lie algebras, J. Algebra, 165, 2, 295-345 (1994) ·Zbl 0808.17005 ·doi:10.1006/jabr.1994.1114
[37]Kato, Syu, Poincar\'e-Birkhoff-Witt bases and Khovanov-Lauda-Rouquier algebras, Duke Math. J., 163, 3, 619-663 (2014) ·Zbl 1292.17012 ·doi:10.1215/00127094-2405388
[38]Khovanov, Mikhail; Lauda, Aaron D., A diagrammatic approach to categorification of quantum groups. I, Represent. Theory, 13, 309-347 (2009) ·Zbl 1188.81117 ·doi:10.1090/S1088-4165-09-00346-X
[39]Khovanov, Mikhail; Lauda, Aaron D., A diagrammatic approach to categorification of quantum groups II, Trans. Amer. Math. Soc., 363, 5, 2685-2700 (2011) ·Zbl 1214.81113 ·doi:10.1090/S0002-9947-2010-05210-9
[40]Kleshchev, Alexander; Ram, Arun, Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words, Math. Ann., 349, 4, 943-975 (2011) ·Zbl 1267.20010 ·doi:10.1007/s00208-010-0543-1
[41]Lascoux, Alain; Leclerc, Bernard; Thibon, Jean-Yves, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys., 181, 1, 205-263 (1996) ·Zbl 0874.17009
[42]Lauda, Aaron D.; Vazirani, Monica, Crystals from categorified quantum groups, Adv. Math., 228, 2, 803-861 (2011) ·Zbl 1246.17017 ·doi:10.1016/j.aim.2011.06.009
[43]McNamara, Peter J., Finite dimensional representations of Khovanov-Lauda-Rouquier algebras I: Finite type, J. Reine Angew. Math., 707, 103-124 (2015) ·Zbl 1378.17018 ·doi:10.1515/crelle-2013-0075
[44]Oh, Se-jin, The denominators of normalized \(R\)-matrices of types \(A_{2n-1}^{(2)}, A_{2n}^{(2)}, B_n^{(1)}\) and \(D_{n+1}^{(2)}\), Publ. Res. Inst. Math. Sci., 51, 4, 709-744 (2015) ·Zbl 1337.81080
[45]Oh14D Se-jin Oh, Auslander-Reiten quiver of type D and generalized quantum affine Schur-Weyl duality, arXiv:1406.4555 [math.RT]. ·Zbl 1338.05274
[46]Papi, Paolo, A characterization of a special ordering in a root system, Proc. Amer. Math. Soc., 120, 3, 661-665 (1994) ·Zbl 0799.20037 ·doi:10.2307/2160454
[47]Ringel, Claus Michael, PBW-bases of quantum groups, J. Reine Angew. Math., 470, 51-88 (1996) ·Zbl 0840.17010 ·doi:10.1515/crll.1996.470.51
[48]R08 R. Rouquier, 2 Kac-Moody algebras, arXiv:0812.5023 (2008).
[49]Varagnolo, M.; Vasserot, E., Canonical bases and KLR-algebras, J. Reine Angew. Math., 659, 67-100 (2011) ·Zbl 1229.17019 ·doi:10.1515/CRELLE.2011.068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp