Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Combinatorial models of expanding dynamical systems.(English)Zbl 1350.37034

Summary: We prove homotopical rigidity of expanding dynamical systems, by showing that they are determined by a group-theoretic invariant. We use this to show that the Julia set of every expanding dynamical system is an inverse limit of simplicial complexes constructed by inductive cut-and-paste rules. Moreover, the cut-and-paste rules can be found algorithmically from the algebraic invariant.

MSC:

37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)
37C15 Topological and differentiable equivalence, conjugacy, moduli, classification of dynamical systems
37B15 Dynamical aspects of cellular automata
37F15 Expanding holomorphic maps; hyperbolicity; structural stability of holomorphic dynamical systems
37F20 Combinatorics and topology in relation with holomorphic dynamical systems
20M35 Semigroups in automata theory, linguistics, etc.
37F50 Small divisors, rotation domains and linearization in holomorphic dynamics

Cite

References:

[1]Nekrashevych, Groups St. Andrews in Bath. Vol. 1 pp 41– (2011)
[2]DOI: 10.2307/2373276 ·Zbl 0201.56305 ·doi:10.2307/2373276
[3]DOI: 10.1090/surv/117 ·doi:10.1090/surv/117
[4]DOI: 10.1007/978-3-662-12494-9 ·doi:10.1007/978-3-662-12494-9
[5]Brauer, Séminaire M. P. Schützenberger, A. Lentin et M. Nivat, 1969/70: Problèmes Mathématiques de la Théorie des Automates (1970)
[6]Macedońska, Dopov. Nats. Akad. Nauk Ukr. Mat. Pryr. Tekh. Nauky 12 pp 36– (2000)
[7]DOI: 10.1006/aima.2001.1986 ·Zbl 1011.20040 ·doi:10.1006/aima.2001.1986
[8]Lyubich, J. Differential Geom. 47 pp 17– (1997) ·Zbl 0910.58032 ·doi:10.4310/jdg/1214460037
[9]DOI: 10.1007/BF02564503 ·Zbl 0839.22011 ·doi:10.1007/BF02564503
[10]DOI: 10.1007/978-1-4612-2098-5 ·doi:10.1007/978-1-4612-2098-5
[11]DOI: 10.1007/978-3-0348-8014-5_2 ·doi:10.1007/978-3-0348-8014-5_2
[12]DOI: 10.1016/j.jfa.2007.11.014 ·Zbl 1143.46034 ·doi:10.1016/j.jfa.2007.11.014
[13]DOI: 10.2307/1968272 ·JFM 54.0609.02 ·doi:10.2307/1968272
[14]DOI: 10.1017/S0143385706000320 ·Zbl 1136.46041 ·doi:10.1017/S0143385706000320
[15]Aleshin, Moscow Univ. Math. Bull. 38 pp 10– (1983)
[16]DOI: 10.1142/S0129167X06003722 ·Zbl 1107.46040 ·doi:10.1142/S0129167X06003722
[17]DOI: 10.1090/S0002-9947-04-03636-0 ·Zbl 1049.46039 ·doi:10.1090/S0002-9947-04-03636-0
[18]Kaimanovich, Mem. Amer. Math. Soc. 173 pp vi+119– (2005)
[19]DOI: 10.1007/s00224-006-1314-y ·Zbl 1121.68064 ·doi:10.1007/s00224-006-1314-y
[20]DOI: 10.1353/ajm.0.0126 ·Zbl 1207.37013 ·doi:10.1353/ajm.0.0126
[21]DOI: 10.1007/978-1-4613-9586-7_3 ·doi:10.1007/978-1-4613-9586-7_3
[22]Grigorchuk, Proc. Steklov Inst. Math. 231 pp 128– (2000)
[23]DOI: 10.1007/s10711-004-1815-2 ·Zbl 1088.20037 ·doi:10.1007/s10711-004-1815-2
[24]DOI: 10.1017/S014338570000417X ·Zbl 0652.54028 ·doi:10.1017/S014338570000417X
[25]Eilenberg, Automata, Languages and Machines. Vol. A (1974)
[26]DOI: 10.1007/BF02392534 ·Zbl 0806.30027 ·doi:10.1007/BF02392534
[27]DOI: 10.1007/BF01388734 ·Zbl 0589.20022 ·doi:10.1007/BF01388734
[28]Cox, Enseign. Math. (2) 30 pp 275– (1984)
[29]DOI: 10.1090/S1088-4173-07-00167-1 ·Zbl 1138.37023 ·doi:10.1090/S1088-4173-07-00167-1
[30]DOI: 10.1090/S1088-4173-01-00055-8 ·Zbl 1060.20037 ·doi:10.1090/S1088-4173-01-00055-8
[31]DOI: 10.1080/10586458.1994.10504282 ·Zbl 0866.30020 ·doi:10.1080/10586458.1994.10504282
[32]DOI: 10.1007/s10711-006-9060-5 ·Zbl 1183.20024 ·doi:10.1007/s10711-006-9060-5
[33]DOI: 10.1112/plms/s3-65.2.423 ·Zbl 0739.58031 ·doi:10.1112/plms/s3-65.2.423
[34]DOI: 10.1016/0040-9383(91)90004-N ·Zbl 0733.58027 ·doi:10.1016/0040-9383(91)90004-N
[35]Spanier, Algebraic Topology (1966)
[36]DOI: 10.1088/0951-7715/1/1/002 ·Zbl 0665.58017 ·doi:10.1088/0951-7715/1/1/002
[37]DOI: 10.1090/pspum/014/0266251 ·doi:10.1090/pspum/014/0266251
[38]Nekrashevych, Holomorphic Dynamics and Renormalization. A Volume in Honour of John Milnor’s 75th Birthday pp 25– (2008) ·doi:10.1090/fic/053/02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp