Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Mimetic discretization of two-dimensional magnetic diffusion equations.(English)Zbl 1349.78095

Summary: In case of non-constant resistivity, cylindrical coordinates, and highly distorted polygonal meshes, a consistent discretization of the magnetic diffusion equations requires new discretization tools based on a discrete vector and tensor calculus. We developed a new discretization method using the mimetic finite difference framework. It is second-order accurate on arbitrary polygonal meshes and a consistent calculation of the Joule heating is intrinsic within it. The second-order convergence rates in \(L^2\) and \(L^1\) norms were verified with numerical experiments.

MSC:

78M20 Finite difference methods applied to problems in optics and electromagnetic theory
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

Software:

AMG1R5

Cite

References:

[1]Beirao da Veiga, L.; Lipnikov, K.; Manzini, G., Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes, SIAM J. Numer. Anal., 49, 1737-1760 (2011) ·Zbl 1242.65215
[2]Bochev, P. B.; Robinson, A. C., Matching algorithms with physics: exact sequences of finite element spaces, (Collected Lectures of the Preservation of Stability Under Discretization (2002), SIAM) ·Zbl 1494.78020
[3]Brezzi, F.; Buffa, A.; Lipnikov, K., Mimetic finite differences for elliptic problems, ESAIM: Math. Model. Numer. Anal., 43, 277-295 (2009) ·Zbl 1177.65164
[4]Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer-Verlag: Springer-Verlag New York ·Zbl 0788.73002
[5]Brezzi, F.; Lipnikov, K.; Shashkov, M., Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal., 43, 5, 1872-1896 (2005) ·Zbl 1108.65102
[6]Brezzi, F.; Lipnikov, K.; Shashkov, M.; Simoncini, V., A new discretization methodology for diffusion problems on generalized polyhedral meshes, Comput. Methods Appl. Mech. Eng., 196, 3682-3692 (2007) ·Zbl 1173.76370
[7]Brezzi, F.; Lipnikov, K.; Simoncini, V., A family of mimetic finite difference methods on polygonal and polyhedral meshes, Math. Model. Methods Appl. Sci., 15, 10, 1533-1551 (2005) ·Zbl 1083.65099
[8]Droniou, J.; Eymard, R.; Gallouet, T.; Herbin, R., A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume method, Math. Model. Methods Appl. Sci., 20, 2, 1-31 (2010)
[9]Hyman, J.; Shashkov, M., The approximation of boundary conditions for mimetic finite difference methods, Comput. Math. Appl., 36, 79-99 (1998) ·Zbl 0932.65111
[10]Hyman, J.; Shashkov, M., The orthogonal decomposition theorems for mimetic finite difference methods, SIAM J. Numer. Anal., 36, 3, 788-818 (1999) ·Zbl 0972.65077
[11]Hyman, J.; Shashkov, M.; Steinberg, S., The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials, J. Comput. Phys., 132, 130-148 (1997) ·Zbl 0881.65093
[13]Lipnikov, K.; Manzini, G.; Svyatskiy, D., Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems, J. Comput. Phys., 230, 2620-2642 (2011) ·Zbl 1218.65117
[15]Morel, J.; Roberts, R.; Shashkov, M., A local support-operators diffusion discretization scheme for quadrilateral \(r - z\) meshes, J. Comput. Phys., 144, 17-51 (1998) ·Zbl 1395.76052
[17]Olson, P., Summation by parts, projections, and stability. I, Math. Comput., 64, 211, 1035-1065 (1995) ·Zbl 0828.65111
[18]Rieben, R. N.; White, D. A., Verification of high-order mixed finite element solution of transient magnetic field problems, IEEE Trans. Magn., 42, 1, 25-39 (2006)
[19]Roberts, J. E.; Thomas, J.-M., Mixed and hybrid methods, (Ciarlet, P. G.; Lions, J. L., Handbook of Numerical Analysis, Finite Element Methods, vol. II (1991), Elsevier/North Holland: Elsevier/North Holland Amsterdam) ·Zbl 0875.65090
[20]Samarskii, A. A.; Tishkin, V. F.; Favorskii, A. P.; Yu, Shashkov M., Operator-difference schemes, Differentsialnye Uravneniya, 17, 7, 1317-1327 (1981), (in Russian) ·Zbl 0485.65060
[21]Shashkov, M., Conservative Finite-Difference Methods on General Grids (1996), CRC Press: CRC Press Boca Raton ·Zbl 0844.65067
[22]Stüben, K., Algebraic multigrid (AMG): experiences and comparisons, Appl. Math. Comput., 13, 419-452 (1983) ·Zbl 0533.65064
[23]Hyman, J.; Shashkov, M., Mimetic discretizations for Maxwell’s equations and the equations of magnetic diffusion, Prog. Electromagn. Res., 32, 89-121 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp