[1] | Beirao da Veiga, L.; Lipnikov, K.; Manzini, G., Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes, SIAM J. Numer. Anal., 49, 1737-1760 (2011) ·Zbl 1242.65215 |
[2] | Bochev, P. B.; Robinson, A. C., Matching algorithms with physics: exact sequences of finite element spaces, (Collected Lectures of the Preservation of Stability Under Discretization (2002), SIAM) ·Zbl 1494.78020 |
[3] | Brezzi, F.; Buffa, A.; Lipnikov, K., Mimetic finite differences for elliptic problems, ESAIM: Math. Model. Numer. Anal., 43, 277-295 (2009) ·Zbl 1177.65164 |
[4] | Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer-Verlag: Springer-Verlag New York ·Zbl 0788.73002 |
[5] | Brezzi, F.; Lipnikov, K.; Shashkov, M., Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal., 43, 5, 1872-1896 (2005) ·Zbl 1108.65102 |
[6] | Brezzi, F.; Lipnikov, K.; Shashkov, M.; Simoncini, V., A new discretization methodology for diffusion problems on generalized polyhedral meshes, Comput. Methods Appl. Mech. Eng., 196, 3682-3692 (2007) ·Zbl 1173.76370 |
[7] | Brezzi, F.; Lipnikov, K.; Simoncini, V., A family of mimetic finite difference methods on polygonal and polyhedral meshes, Math. Model. Methods Appl. Sci., 15, 10, 1533-1551 (2005) ·Zbl 1083.65099 |
[8] | Droniou, J.; Eymard, R.; Gallouet, T.; Herbin, R., A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume method, Math. Model. Methods Appl. Sci., 20, 2, 1-31 (2010) |
[9] | Hyman, J.; Shashkov, M., The approximation of boundary conditions for mimetic finite difference methods, Comput. Math. Appl., 36, 79-99 (1998) ·Zbl 0932.65111 |
[10] | Hyman, J.; Shashkov, M., The orthogonal decomposition theorems for mimetic finite difference methods, SIAM J. Numer. Anal., 36, 3, 788-818 (1999) ·Zbl 0972.65077 |
[11] | Hyman, J.; Shashkov, M.; Steinberg, S., The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials, J. Comput. Phys., 132, 130-148 (1997) ·Zbl 0881.65093 |
[13] | Lipnikov, K.; Manzini, G.; Svyatskiy, D., Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems, J. Comput. Phys., 230, 2620-2642 (2011) ·Zbl 1218.65117 |
[15] | Morel, J.; Roberts, R.; Shashkov, M., A local support-operators diffusion discretization scheme for quadrilateral \(r - z\) meshes, J. Comput. Phys., 144, 17-51 (1998) ·Zbl 1395.76052 |
[17] | Olson, P., Summation by parts, projections, and stability. I, Math. Comput., 64, 211, 1035-1065 (1995) ·Zbl 0828.65111 |
[18] | Rieben, R. N.; White, D. A., Verification of high-order mixed finite element solution of transient magnetic field problems, IEEE Trans. Magn., 42, 1, 25-39 (2006) |
[19] | Roberts, J. E.; Thomas, J.-M., Mixed and hybrid methods, (Ciarlet, P. G.; Lions, J. L., Handbook of Numerical Analysis, Finite Element Methods, vol. II (1991), Elsevier/North Holland: Elsevier/North Holland Amsterdam) ·Zbl 0875.65090 |
[20] | Samarskii, A. A.; Tishkin, V. F.; Favorskii, A. P.; Yu, Shashkov M., Operator-difference schemes, Differentsialnye Uravneniya, 17, 7, 1317-1327 (1981), (in Russian) ·Zbl 0485.65060 |
[21] | Shashkov, M., Conservative Finite-Difference Methods on General Grids (1996), CRC Press: CRC Press Boca Raton ·Zbl 0844.65067 |
[22] | Stüben, K., Algebraic multigrid (AMG): experiences and comparisons, Appl. Math. Comput., 13, 419-452 (1983) ·Zbl 0533.65064 |
[23] | Hyman, J.; Shashkov, M., Mimetic discretizations for Maxwell’s equations and the equations of magnetic diffusion, Prog. Electromagn. Res., 32, 89-121 (2001) |