[1] | Abels, H., Existence of weak solutions for a diffuse interface model for viscous incompressible fluids with general densities, Commun. Math. Phys., 289, 1, 45-73 (2009) ·Zbl 1165.76050 |
[2] | Abels, H.; Garcke, H.; Grün, G., Thermodynamically consistent diffuse interface models for incompressible two-phase flows with different densities (2010), arXiv e-prints |
[3] | Abels, H.; Garcke, H.; Grün, G., Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci., 22, 3, 1150013 (2012) ·Zbl 1242.76342 |
[4] | Aland, S.; Voigt, A., Benchmark computations of diffuse interface models for two-dimensional bubble dynamics, Int. J. Numer. Methods Fluids, 69, 3, 747-761 (2012) |
[5] | Anderson, D. M.; McFadden, G. B.; Wheeler, A. A., Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30, 139-165 (1998) ·Zbl 1398.76051 |
[6] | Boyer, F., A theoretical and numerical model for the study of incompressible mixture flows, Comput. Fluids, 31, 1, 41-68 (2002) ·Zbl 1057.76060 |
[7] | Braides, A., \(Γ\)-Convergence for Beginners (2002), Oxford University Press ·Zbl 1198.49001 |
[8] | Ciarlet, P. G., The Finite Element Method for Elliptic Problems (2002), SIAM ·Zbl 0999.65129 |
[9] | Ding, H.; Spelt, P. D.M.; Shu, C., Diffuse interface model for incompressible two-phase flows with large density ratios, J. Comput. Phys., 226, 2078-2095 (2007) ·Zbl 1388.76403 |
[10] | Dohrmann, C. R.; Bochev, P. B., A stabilized finite element method for the Stokes problem based on polynomial pressure projections, Int. J. Numer. Methods Fluids, 46, 183-201 (2004) ·Zbl 1060.76569 |
[11] | Evans, L. C.; Gariepy, R. F., Measure Theory and Fine Properties of Functions, Stud. Adv. Math. (1991), CRC Press |
[12] | Grün, G., On the convergence of entropy consistent schemes for lubrication type equations in multiple space dimensions, Math. Comput., 72, 243, 1251-1279 (2003), MR 1972735 (2004c:65109) ·Zbl 1084.65093 |
[13] | Grün, G.; Klingbeil, F., On stable schemes for diffuse interface models for two-phase flow with general mass densities (2011), University of Erlangen, preprint ·Zbl 1349.76210 |
[14] | Grün, G.; Rumpf, M., Nonnegativity preserving convergent schemes for the thin film equation, Numer. Math., 87, 113-152 (2000), MR 1800156 (2002h:76108) ·Zbl 0988.76056 |
[16] | Grün, G., On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities (2013), Isaac-Newton-Institute for Mathematical Sciences: Isaac-Newton-Institute for Mathematical Sciences Cambridge, UK, preprint NI13045-CFM ·Zbl 1331.35277 |
[17] | Hohenberg, P. C.; Halperin, B. I., Theory of dynamic critical phenomena, Rev. Mod. Phys., 49, 435-479 (1977) |
[18] | Hysing, S.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S.; Tobiska, L., Quantitative benchmark computations of two-dimensional bubble dynamics, Int. J. Numer. Methods Fluids, 60, 11, 1259-1288 (2009) ·Zbl 1273.76276 |
[19] | Kröner, D., Numerical Schemes for Conservation Laws, Wiley-Teubner Ser. Adv. Numer. Math. (1997), John Wiley & Sons Ltd., MR 1437144 (98b:65003) ·Zbl 0872.76001 |
[20] | Lowengrub, J.; Truskinovsky, L., Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. A, 454, 1978, 2617-2654 (1998) ·Zbl 0927.76007 |
[21] | Modica, L., The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal., 98, 123-142 (1987) ·Zbl 0616.76004 |
[22] | Modica, L.; Mortola, S., Un esempio die \(Γ\)-convergenza, Boll. Unione Mat. Ital., B, 14, 285-299 (1977) ·Zbl 0356.49008 |
[23] | Lord; Rayleigh, J. W.S., Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proc. Lond. Math. Soc., 14, 170-177 (1883) ·JFM 15.0848.02 |
[24] | Salgado, A. J., A diffuse interface fractional time-stepping technique for incompressible two-phase flows with moving contact lines, ESAIM Math. Model. Numer. Anal., 47, 03, 743-769 (May 2013) ·Zbl 1304.35503 |
[25] | Schenk, O.; Gärtner, K., Solving unsymmetric sparse systems of linear equations with PARDISO, Future Gener. Comput. Syst., 20, 475-487 (2004) |
[26] | Shen, J.; Yang, X., A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities, SIAM J. Sci. Comput., 32, 3, 1159-1179 (2010) ·Zbl 1410.76464 |
[27] | Taylor, G. I., The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I, R. Soc. Lond. Proc. Ser. A, 201, 1065, 192-196 (1950) ·Zbl 0038.12201 |
[28] | Tryggvason, G., Numerical simulations of the Rayleigh-Taylor instability, J. Comput. Phys., 75, 253-282 (1988) ·Zbl 0638.76056 |
[29] | Ziemer, W. P., Weakly Differentiable Functions, Ser. Grad. Texts Math. (1989), Springer-Verlag: Springer-Verlag New York, MR 1014685 (91e:46046) ·Zbl 0692.46022 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.