Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Two-phase flow with mass density contrast: stable schemes for a thermodynamic consistent and frame-indifferent diffuse-interface model.(English)Zbl 1349.76210

Summary: In this paper, we present a numerical scheme for the diffuse-interface model in [H. Abels et al., Math. Models Methods Appl. Sci. 22, No. 3, 1150013, 40 p. (2012;Zbl 1242.76342)] for two-phase flow of immiscible, incompressible fluids. As that model is in particular consistent with thermodynamics, energy estimates are expected to carry over to the discrete setting. By a subtle discretization of the convective coupling with the flux of the phase-field in the momentum equation, we prove discrete consistency with thermodynamics. Numerical experiments in two spatial dimensions – ranging from Rayleigh-Taylor instability to a comparison with previous modeling approaches – indicate the full practicality of our scheme and enable a first validation of the new modeling approach in [loc. cit.].

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76M12 Finite volume methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
76T99 Multiphase and multicomponent flows

Citations:

Zbl 1242.76342

Software:

PARDISO

Cite

References:

[1]Abels, H., Existence of weak solutions for a diffuse interface model for viscous incompressible fluids with general densities, Commun. Math. Phys., 289, 1, 45-73 (2009) ·Zbl 1165.76050
[2]Abels, H.; Garcke, H.; Grün, G., Thermodynamically consistent diffuse interface models for incompressible two-phase flows with different densities (2010), arXiv e-prints
[3]Abels, H.; Garcke, H.; Grün, G., Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci., 22, 3, 1150013 (2012) ·Zbl 1242.76342
[4]Aland, S.; Voigt, A., Benchmark computations of diffuse interface models for two-dimensional bubble dynamics, Int. J. Numer. Methods Fluids, 69, 3, 747-761 (2012)
[5]Anderson, D. M.; McFadden, G. B.; Wheeler, A. A., Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30, 139-165 (1998) ·Zbl 1398.76051
[6]Boyer, F., A theoretical and numerical model for the study of incompressible mixture flows, Comput. Fluids, 31, 1, 41-68 (2002) ·Zbl 1057.76060
[7]Braides, A., \(Γ\)-Convergence for Beginners (2002), Oxford University Press ·Zbl 1198.49001
[8]Ciarlet, P. G., The Finite Element Method for Elliptic Problems (2002), SIAM ·Zbl 0999.65129
[9]Ding, H.; Spelt, P. D.M.; Shu, C., Diffuse interface model for incompressible two-phase flows with large density ratios, J. Comput. Phys., 226, 2078-2095 (2007) ·Zbl 1388.76403
[10]Dohrmann, C. R.; Bochev, P. B., A stabilized finite element method for the Stokes problem based on polynomial pressure projections, Int. J. Numer. Methods Fluids, 46, 183-201 (2004) ·Zbl 1060.76569
[11]Evans, L. C.; Gariepy, R. F., Measure Theory and Fine Properties of Functions, Stud. Adv. Math. (1991), CRC Press
[12]Grün, G., On the convergence of entropy consistent schemes for lubrication type equations in multiple space dimensions, Math. Comput., 72, 243, 1251-1279 (2003), MR 1972735 (2004c:65109) ·Zbl 1084.65093
[13]Grün, G.; Klingbeil, F., On stable schemes for diffuse interface models for two-phase flow with general mass densities (2011), University of Erlangen, preprint ·Zbl 1349.76210
[14]Grün, G.; Rumpf, M., Nonnegativity preserving convergent schemes for the thin film equation, Numer. Math., 87, 113-152 (2000), MR 1800156 (2002h:76108) ·Zbl 0988.76056
[16]Grün, G., On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities (2013), Isaac-Newton-Institute for Mathematical Sciences: Isaac-Newton-Institute for Mathematical Sciences Cambridge, UK, preprint NI13045-CFM ·Zbl 1331.35277
[17]Hohenberg, P. C.; Halperin, B. I., Theory of dynamic critical phenomena, Rev. Mod. Phys., 49, 435-479 (1977)
[18]Hysing, S.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S.; Tobiska, L., Quantitative benchmark computations of two-dimensional bubble dynamics, Int. J. Numer. Methods Fluids, 60, 11, 1259-1288 (2009) ·Zbl 1273.76276
[19]Kröner, D., Numerical Schemes for Conservation Laws, Wiley-Teubner Ser. Adv. Numer. Math. (1997), John Wiley & Sons Ltd., MR 1437144 (98b:65003) ·Zbl 0872.76001
[20]Lowengrub, J.; Truskinovsky, L., Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. A, 454, 1978, 2617-2654 (1998) ·Zbl 0927.76007
[21]Modica, L., The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal., 98, 123-142 (1987) ·Zbl 0616.76004
[22]Modica, L.; Mortola, S., Un esempio die \(Γ\)-convergenza, Boll. Unione Mat. Ital., B, 14, 285-299 (1977) ·Zbl 0356.49008
[23]Lord; Rayleigh, J. W.S., Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proc. Lond. Math. Soc., 14, 170-177 (1883) ·JFM 15.0848.02
[24]Salgado, A. J., A diffuse interface fractional time-stepping technique for incompressible two-phase flows with moving contact lines, ESAIM Math. Model. Numer. Anal., 47, 03, 743-769 (May 2013) ·Zbl 1304.35503
[25]Schenk, O.; Gärtner, K., Solving unsymmetric sparse systems of linear equations with PARDISO, Future Gener. Comput. Syst., 20, 475-487 (2004)
[26]Shen, J.; Yang, X., A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities, SIAM J. Sci. Comput., 32, 3, 1159-1179 (2010) ·Zbl 1410.76464
[27]Taylor, G. I., The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I, R. Soc. Lond. Proc. Ser. A, 201, 1065, 192-196 (1950) ·Zbl 0038.12201
[28]Tryggvason, G., Numerical simulations of the Rayleigh-Taylor instability, J. Comput. Phys., 75, 253-282 (1988) ·Zbl 0638.76056
[29]Ziemer, W. P., Weakly Differentiable Functions, Ser. Grad. Texts Math. (1989), Springer-Verlag: Springer-Verlag New York, MR 1014685 (91e:46046) ·Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp