[1] | International Energy Agency, World energy outlook 2006 (2007), OECD/IEA: OECD/IEA Paris, Tech. rep. |
[2] | Eymard, R.; Gallouet, T., Hybrid finite element techniques for oil recovery simulation, Comput. Methods Appl. Mech. Eng., 74, 83-98 (1989) ·Zbl 0687.76101 |
[3] | Fung, L.; Hieben, A.; Nshiera, L., Reservoir simulation with a control volume finite-element method, SPE Reserv. Eng., 7, 349-357 (1991) |
[4] | Durlofsky, L. J., A triangle based mixed finite-element-finite volume technique for modelling two phase flow through porous media, J. Comput. Phys., 105, 252-266 (1993) ·Zbl 0768.76046 |
[5] | Huber, R.; Helmig, R., Multi-phase flow in heterogeneous porous media: a classical finite element method versus an implicit pressure-explicit saturation-based mixed finite element-finite volume approach, Int. J. Numer. Methods Fluids, 29, 899-920 (1999) ·Zbl 0938.76053 |
[6] | Geiger, S.; Roberts, S.; Matthai, S.; Zoppou, C.; Burri, A., Combining finite element and finite volume methods for efficient multiphase flow simulation in highly heterogenous and structurally complex geological media, Geofluids, 4, 284-299 (2004) |
[7] | Schmid, K.; Geiger, S.; Sorbie, K., Higher order fe-fv method on unstructured grids for transport and two-phase flow with variable viscosity in heterogeneous porous media, J. Comput. Phys., 241, 416-444 (2013) ·Zbl 1349.76262 |
[8] | Thomas, J. M.; Trujillo, D., Mixed finite volume methods, Int. J. Numer. Methods Eng., 46, 1351-1366 (1999) ·Zbl 0948.65125 |
[9] | Nick, H.; Matthai, S., A hybrid finite-element finite-volume method with embedded discontinuities for solute transport in heterogenous media, Vadose Zone J., 10, 299-312 (2011) |
[10] | Abushaikha, A., Numerical methods for modelling fluid flow in highly heterogeneous and fractured reservoirs (2013), Imperial College London: Imperial College London London, United Kingdom, PhD thesis |
[11] | Edwards, M. G., Higher-resolution hyperbolic-coupled-elliptic flux-continuous cvd schemes on structured and unstructured grids in 2-d, Int. J. Numer. Methods Fluids, 51, 1059-1077 (2006) ·Zbl 1158.76363 |
[12] | Bazr-Afkan, S.; Matthai, S., A new hybrid simulation method for multiphase flow on unstructured grids with discrete representations of material interfaces, (IAMG (2011)) |
[13] | Zhang, Y.; King, M.; Datta-Gupta, A., Robust streamline tracing using inter-cell fluxes in locally refined and unstructured grids, Water Resour. Res., 48 (2012) |
[14] | Verma, S.; Aziz, K. A., Control volume scheme for flexible grids in reservoir simulation, (The 1997 SPE Symposium on Reservoir Simulation. The 1997 SPE Symposium on Reservoir Simulation, Dallas (1997)) |
[15] | Edwards, M. G., Higher-resolution hyperbolic-coupled-elliptic flux-continuous cvd schemes on structured and unstructured grids in 3-d, Int. J. Numer. Methods Fluids, 51, 1079-1095 (2006) ·Zbl 1158.76364 |
[16] | Chavent, G.; Jaffre, J., Mathematical Models and Finite Elements for Reservoir Simulation (1986), North-Holland: North-Holland Amsterdam ·Zbl 0603.76101 |
[17] | Bergamaschi, L.; Mantica, S.; Manzini, G., A mixed finite element-finite volume formulation of the black-oil model, J. Sci. Comput., 20, 970-997 (1989) ·Zbl 0959.76039 |
[18] | Berzzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer: Springer Berlin ·Zbl 0788.73002 |
[19] | Durlofsky, L., Accuracy of mixed and control volume finite element approximations to Darcy velocity and related quantities, Water Resour. Res., 30, 965-973 (1994) |
[20] | Hoteit, H.; Firoozabadi, A., Compositional modelling by the combined discontinuous Galerkin and mixed methods, SPE J., 11, 19-34 (2006) |
[21] | Cordes, C.; Kinzelbach, W., Comment on “Application of the mixed hybrid finite element approximation in a groundwater flow model: Luxury or necessity?” by R. Mosé, P. Siegel, P. Ackerer, and G. Chavent, Water Resour. Res., 32, 1905-1909 (1996) |
[22] | Lachassagne, P.; Ledoux, E.; deMarsily, G., Evaluation of hydrogeological parameters in heterogeneous porous media, (Proceedings of Benidorm Symposium on Groundwater Management: Quantity and Quality. Proceedings of Benidorm Symposium on Groundwater Management: Quantity and Quality, IAHS Publ., vol. 188 (1989)), 3-18 |
[23] | Mose, P.; Siegel, P.; Ackerer, P.; Chavent, G., Application of the mixed hybrid finite element approximation in a groundwater flow model: luxury or necessity?, Water Resour. Res., 30, 3001-3012 (1994) |
[24] | Chavent, G.; Roberts, J., A unified physical presentation of mixed, mixed-hybrid finite elements and standard finite difference approximations for the determination of velocities in water flow problems, Adv. Water Resour., 14, 329-348 (1991) |
[25] | Younes, A.; Mose, R.; Ackerer, P.; Chavent, G., A new formulation of mixed finite element method for solving elliptic and parabolic pde with triangular elements, J. Comput. Phys., 149, 148-167 (1999) ·Zbl 0923.65064 |
[26] | Raviart, P. A.; Thomas, J. M., A mixed finite element method for second order elliptic problems, (Lect. Notes Math., vol. 606 (1977)), 292-315 ·Zbl 0362.65089 |
[27] | Courant, R., Variational methods for the solution of problems of equilibrium and vibrations, Bull. Am. Math. Soc., 49, 1-23 (1943) ·Zbl 0810.65100 |
[28] | Voller, V. R., Basic Control Volume Finite Element Methods for Fluids and Solids (2009), World Scientific Publishing Co. Pte. Ltd.: World Scientific Publishing Co. Pte. Ltd. Singapore ·Zbl 1162.74002 |
[29] | Bear, J., Dynamics of Fluids in Porous Media (1972), Dover: Dover New York ·Zbl 1191.76001 |
[30] | Corey, A. T., The interrelation between gas and oil relative permeabilities, Prod. Mon., 19, 38-41 (1954) |
[31] | Kaasschieter, E. F.; Huijben, A. J.M., Mixed-hybrid finite elements and streamline computation for the potential flow problem, Numer. Methods Partial Differ. Equ., 8, 221-266 (1992) ·Zbl 0767.76029 |
[32] | Younes, A.; Ackerer, P.; Chavent, G., From mixed finite elements to finite volumes for elliptic pdes in two and three dimensions, Int. J. Numer. Methods Eng., 59, 365-388 (2004) ·Zbl 1043.65131 |
[33] | Geuzaine, C.; Remacle, J., Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng., 79, 1309-1331 (2009) ·Zbl 1176.74181 |
[34] | Buckley, S.; Leverett, M., Mechanism of fluid displacements in sands, Trans. AIME, 146, 107-116 (1942) |
[35] | Blunt, M.; Rubin, B., Implicit flux limiting schemes for petroleum reservoir simulation, J. Comput. Phys., 102, 194-210 (1992) ·Zbl 0775.76109 |
[36] | Hoteit, H.; Firoozabadi, A., Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures, Adv. Water Resour., 31, 56-73 (2008) |
[37] | Janicke, L.; Kost, A., Error estimation and adaptive mesh generation in the 2d and 3d finite element method, IEEE Trans. Magn., 32, 1334-1337 (1996) |
[39] | Weixuan, L.; Guang, L.; Dongxiao, Z., An adaptive ANOVA-based PCKF for high-dimensional nonlinear inverse modeling, J. Comput. Phys., 258, 752-772 (2014) ·Zbl 1349.65025 |
[40] | Schlumberger, Eclipse reference manual 2011.2 (2011), Schlumberger: Schlumberger Houston, Tech. rep. |
[41] | Zhang, N.; Yao, J.; Huang, Z.; Wang, Y., Accurate multiscale finite element method for numerical simulation of two-phase flow in fractured media using discrete-fracture model, J. Comput. Phys., 242, 420-438 (2013) ·Zbl 1299.76156 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.