[1] | Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E., Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 1087 (1953) ·Zbl 1431.65006 |
[2] | Geman, S.; Geman, D., Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell., PAMI-6, 721-741 (1984) ·Zbl 0573.62030 |
[3] | Kalman, R. E., A new approach to linear filtering and prediction problems, J. Basic Eng., 82, 35-45 (1960) |
[4] | Evensen, G., Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., Oceans, 99, 10143-10162 (1994) |
[5] | Evensen, G., Data Assimilation: The Ensemble Kalman Filter (2009), Springer ·Zbl 1395.93534 |
[6] | Evensen, G., The ensemble Kalman filter: theoretical formulation and practical implementation, Ocean Dyn., 53, 343-367 (2003) |
[7] | Wiener, N., The homogeneous chaos, Am. J. Math., 60, 897-936 (1938) ·JFM 64.0887.02 |
[8] | Ghanem, R. G.; Spanos, P. D., Stochastic Finite Elements: A Spectral Approach (2003), Courier Dover Publications |
[9] | Xiu, D.; Karniadakis, G. E., Modeling uncertainty in flow simulations via generalized polynomial chaos, J. Comput. Phys., 187, 137-167 (2003) ·Zbl 1047.76111 |
[10] | Isukapalli, S. S.; Roy, A.; Georgopoulos, P. G., Stochastic response surface methods (SRSMs) for uncertainty propagation: application to environmental and biological systems, Risk Anal., 18, 351-363 (1998) |
[11] | Tatang, M. A.; Pan, W.; Prinn, R. G.; McRae, G. J., An efficient method for parametric uncertainty analysis of numerical geophysical models, J. Geophys. Res., 102, 21925-21926 (1997) |
[12] | Xiu, D.; Hesthaven, J. S., High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27, 1118-1139 (2005) ·Zbl 1091.65006 |
[13] | Eldred, M.; Burkardt, J., Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification, (47th AIAA Aerosp. Sci. Meet. New Horizons Forum Aerosp. Expo. (2009)) |
[14] | Webster, M. D.; Tatang, M. A.; McRae, G. J., Application of the probabilistic collocation method for an uncertainty analysis of a simple ocean model (1996), MIT Technical Report |
[15] | Hockenberry, J. R.; Lesieutre, B. C., Evaluation of uncertainty in dynamic simulations of power system models: The probabilistic collocation method, IEEE Trans. Power Syst., 19, 1483-1491 (2004) |
[16] | Li, H.; Zhang, D., Probabilistic collocation method for flow in porous media: Comparisons with other stochastic methods, Water Resour. Res., 43 (2007) |
[17] | Li, W.; Lu, Z.; Zhang, D., Stochastic analysis of unsaturated flow with probabilistic collocation method, Water Resour. Res., 45 (2009) |
[18] | Saad, G.; Ghanem, R., Characterization of reservoir simulation models using a polynomial chaos-based ensemble Kalman filter, Water Resour. Res., 45 (2009) |
[19] | Li, J.; Xiu, D., A generalized polynomial chaos based ensemble Kalman filter with high accuracy, J. Comput. Phys., 228, 5454-5469 (2009) ·Zbl 1280.93084 |
[20] | Zeng, L.; Zhang, D., A stochastic collocation based Kalman filter for data assimilation, Comput. Geosci., 14, 721-744 (2010) ·Zbl 1381.86028 |
[21] | Zeng, L.; Chang, H.; Zhang, D., A probabilistic collocation-based Kalman filter for history matching, SPE J., 16, 294-306 (2011) |
[22] | Li, W.; Oyerinde, A.; Stern, D.; Wu, X.; Zhang, D., Probabilistic collocation based Kalman filter for assisted history matching—a case study, (SPE Reserv. Simul. Symp. (2011)) |
[23] | Rabitz, H.; Alis, Ö. F., General foundations of high-dimensional model representations, J. Math. Chem., 25, 197-233 (1999) ·Zbl 0957.93004 |
[24] | Li, G.; Wang, S.-W.; Rosenthal, C.; Rabitz, H., High dimensional model representations generated from low dimensional data samples. I. mp-Cut-HDMR, J. Math. Chem., 30, 1-30 (2001) ·Zbl 1023.81521 |
[25] | Foo, J.; Karniadakis, G. E., Multi-element probabilistic collocation method in high dimensions, J. Comput. Phys., 229, 1536-1557 (2010) ·Zbl 1181.65014 |
[26] | Ma, X.; Zabaras, N., An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differential equations, J. Comput. Phys., 229, 3884-3915 (2010) ·Zbl 1189.65019 |
[27] | Yang, X.; Choi, M.; Lin, G.; Karniadakis, G. E., Adaptive ANOVA decomposition of stochastic incompressible and compressible flows, J. Comput. Phys., 231, 1587-1614 (2012) ·Zbl 1408.76428 |
[28] | Burgers, G.; Jan van Leeuwen, P.; Evensen, G., Analysis scheme in the ensemble Kalman filter, Mon. Weather Rev., 126, 1719-1724 (1998) |
[29] | Whitaker, J. S.; Hamill, T. M., Ensemble data assimilation without perturbed observations, Mon. Weather Rev., 130, 1913-1924 (2002) |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.