Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Multiple operator integrals in perturbation theory.(English)Zbl 1348.46048

Summary: The purpose of this survey article is to give an introduction to double operator integrals and multiple operator integrals and to discuss various applications of such operator integrals in perturbation theory. We start with the Birman-Solomyak approach to define double operator integrals and consider applications in estimating operator differences \(f(A)-f(B)\) for self-adjoint operators \(A\) and \(B\). Next, we present the Birman-Solomyak approach to the Lifshits-Krein trace formula that is based on double operator integrals. We study the class of operator Lipschitz functions, operator differentiable functions, operator Hölder functions, obtain Schatten-von Neumann estimates for operator differences. Finally, we consider in Chapter 1 estimates of functions of normal operators and functions of \(d\)-tuples of commuting self-adjoint operators under perturbations. In Chapter 2 we define multiple operator integrals in the case when the integrands belong to the integral projective tensor product of \(L^\infty\) spaces. We consider applications of such multiple operator integrals to the problem of the existence of higher operator derivatives and to the problem of estimating higher operator differences. We also consider connections with trace formulae for functions of operators under perturbations of class \(\mathbf{S}_m\), \(m\geq 2\). In the last chapter we define Haagerup-like tensor products of the first kind and of the second kind and we use them to study functions of noncommuting self-adjoint operators under perturbation. We show that for functions \(f\) in the Besov class \(B_{\infty,1}^1({\mathbb R}^2)\) and for \(p\in [1,2]\) we have a Lipschitz type estimate in the Schatten-von Neumann norm \(\mathbf{S}_p\) for functions of pairs of noncommuting self-adjoint operators, but there is no such a Lipschitz type estimate in the norm of \(\mathbf{S}_p\) with \(p>2\) as well as in the operator norm. We also use triple operator integrals to estimate the trace norms of commutators of functions of almost commuting self-adjoint operators and extend the Helton-Howe trace formula for arbitrary functions in the Besov space \(B_{\infty,1}^1({\mathbb R}^2)\).

MSC:

46G10 Vector-valued measures and integration
47A55 Perturbation theory of linear operators
47A56 Functions whose values are linear operators (operator- and matrix-valued functions, etc., including analytic and meromorphic ones)

Cite

References:

[1]Aleksandrov, A.B., Nazarov, F.L., Peller, V.V.: Functions of perturbed noncommuting self-adjoint operators. C.R. Acad. Sci. Paris, Sér. I 353, 209-214 (2015) ·Zbl 1309.47009 ·doi:10.1016/j.crma.2014.12.005
[2]Aleksandrov, A.B., Nazarov, F.L., Peller, V.V.: Triple operator integrals in Schatten-von Neumann norms and functions of perturbed noncommuting operators. C.R. Acad. Sci. Paris, Sér. I 353, 723-728 (2015) ·Zbl 1325.47033 ·doi:10.1016/j.crma.2015.05.005
[3]Aleksandrov, A.B., Nazarov, F.L. Peller, V.V.: Functions of noncommuting self-adjoint operators under perturbation and estimates of triple operator integrals, to appear ·Zbl 1359.47012
[4]Aleksandrov, A.B., Peller, V.V.: Functions of perturbed operators. C.R. Acad. Sci. Paris, Sér I 347, 483-488 (2009) ·Zbl 1168.47011 ·doi:10.1016/j.crma.2009.03.004
[5]Aleksandrov, A.B., Peller, V.V.: Operator Hölder-Zygmund functions. Advances in Math 224, 910-966 (2010) ·Zbl 1193.47017 ·doi:10.1016/j.aim.2009.12.018
[6]Aleksandrov, A.B., Peller, V.V.: Functions of operators under perturbations of class \[{\varvec{S}}_p\] Sp. J. Funct. Anal. 258, 3675-3724 (2010) ·Zbl 1196.47012 ·doi:10.1016/j.jfa.2010.02.011
[7]Aleksandrov, A.B., Peller, V.V.: Functions of perturbed unbounded self-adjoint operators. Operator Bernstein type inequalities. Indiana Univ. Math. J. 59(4), 1451-1490 (2010) ·Zbl 1223.47015 ·doi:10.1512/iumj.2010.59.4345
[8]Aleksandrov, A.B., Peller, V.V.: Estimates of operator moduli of continuity. J. Funct. Anal. 261, 2741-2796 (2011) ·Zbl 1241.47006 ·doi:10.1016/j.jfa.2011.07.009
[9]Aleksandrov, A.B., Peller, V.V.: Functions of perturbed dissipative operators. St.Petersburg. Math. J. 23(2), 9-51 (2011) ·Zbl 1250.47013
[10]Aleksandrov, A.B., Peller, V.V.: Trace formulae for perturbations of class \[\varvec{S}_mSm\]. J. Spectral Theory 1, 1-26 (2011) ·Zbl 1272.47020 ·doi:10.4171/JST/1
[11]Aleksandrov, A.B., Peller, V.V.: Operator and commutator moduli of continuity for normal operators. Proc. London Math. Soc. (3) 105, 821-851 (2012) ·Zbl 1262.47017 ·doi:10.1112/plms/pds012
[12]Aleksandrov, A.B., Peller, V.V.: Almost commuting functions of almost commuting self-adjoint operators. C. R. Acad. Sci. Paris, Ser. I 353, 583-588 (2015) ·Zbl 1316.47018 ·doi:10.1016/j.crma.2015.04.012
[13]Aleksandrov, A.B., Peller, V.V., Potapov, D., Sukochev, F.: Functions of normal operators under perturbations. Advances in Math 226, 5216-5251 (2011) ·Zbl 1220.47018 ·doi:10.1016/j.aim.2011.01.008
[14]Azamov, N.A., Carey, A.L., Dodds, P.G., Sukochev, F.A.: Operator integrals, spectral shift and spectral flow. Canad. J. Math. 61, 241-263 (2009) ·Zbl 1163.47008 ·doi:10.4153/CJM-2009-012-0
[15]Bennett, G.: Schur multipliers. Duke Math. J. 44, 603-639 (1977) ·Zbl 0389.47015 ·doi:10.1215/S0012-7094-77-04426-X
[16]Bergh, J., Löfström, J.: Interpolation spaces. Springer-Verlag, Berlin (1976) ·Zbl 0344.46071 ·doi:10.1007/978-3-642-66451-9
[17]Birman, M.S., Solomyak, M.Z.: Double Stieltjes operator integrals, Problems of Math. Phys., Leningrad. Univ. 1 (1966), 33-67 (Russian). English transl.: Topics Math. Physics 1, : 25-54 . Consultants Bureau Plenum Publishing Corporation, New York (1967) ·Zbl 0161.34602
[18]Birman, M.S., Solomyak, M.Z.: Double Stieltjes operator integrals. II, Problems of Math. Phys., Leningrad. Univ. 2 (1967), 26-60 (Russian). English transl.: Topics Math. Physics 2, : 19-46. Consultants Bureau Plenum Publishing Corporation, New York (1968) ·Zbl 0182.46202
[19]Birman, M.S., Solomyak, M.Z.: Remarks on the spectral shift function, Zapiski Nauchn. Semin. LOMI 27 (1972), 33-46 (Russian). English transl.: J. Soviet Math. 3 (1975), 408-419 ·Zbl 0329.47009
[20]Birman, M.S., Solomyak, M.Z.: Double Stieltjes operator integrals. III. Problems of Math. Phys., Leningrad. Univ 6, 27-53 (1973). (Russian) ·Zbl 0281.47013
[21]Birman, M.S., Solomyak, M.Z.: Spectral theory of selfadjoint operators in Hilbert space, Mathematics and its Applications (Soviet Series). D. Reidel Publishing Co., Dordrecht (1987) ·Zbl 0744.47017
[22]Birman, M.S., Solomyak, M.Z.: Tensor product of a finite number of spectral measures is always a spectral measure. Integral Equations Operator Theory 24, 179-187 (1996) ·Zbl 0844.47013 ·doi:10.1007/BF01193459
[23]Birman, M.S., Solomyak, M.Z.: Double operator integrals in Hilbert space. Int. Equat. Oper. Theory 47, 131-168 (2003) ·Zbl 1054.47030 ·doi:10.1007/s00020-003-1157-8
[24]Daletskii, Yu.L., Krein, S.G.: Integration and differentiation of functions of Hermitian operators and application to the theory of perturbations (Russian), Trudy Sem. Functsion. Anal., Voronezh. Gos. Univ. 1 (1956), 81-105 ·Zbl 0073.09701
[25]Farforovskaya, YuB: The connection of the Kantorovich-Rubinshtein metric for spectral resolutions of selfadjoint operators with functions of operators (Russian). Vestnik Leningrad. Univ. 19, 94-97 (1968) ·Zbl 0165.48002
[26]Farforovskaya, YuB: An example of a Lipschitzian function of selfadjoint operators that yields a nonnuclear increase under a nuclear perturbation. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 30, 146-153 (1972). (Russian) ·Zbl 0333.47009
[27]Farforovskaya, YuB: An estimate of the norm of \[\mid f(B)-f(A)\mid \]∣f(B)-f(A)∣. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 56, 143-162 (1976). (Russian) ·Zbl 0346.47025
[28]Farforovskaya, Yu.B.: An estimate of the norm \[\Vert f(A_1,A_2)-f(B_1,B_2)\Vert \]‖f(A1,A2)-f(B1,B2)‖ for pairs of selfadjoint commuting operators (Russian), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 135 (1984), 175-177 ·Zbl 0542.47016
[29]Farforovskaya, YuB, Nikolskaya, L.N.: An inequality for commutators of normal operators. Acta Sci. Math. (Szeged) 71, 751-765 (2005) ·Zbl 1105.47012
[30]Farforovskaya, Yu.B., Nikolskaya, L.N.: Operator Hölderness of Hölder functions (Russian), Algebra i Analiz. 22:4 (2010), 198-213. English Transl. in St. Petersburg Math. J. 22 (2011), 657-668 ·Zbl 0217.45503
[31]Helton, J.W., Howe, R.: Integral operators: commutators, traces, index, and homology, in “Lecture Notes in Math.”, vol. 345, pp. 141-209, Springer-Verlag, New York, (1973) ·Zbl 0268.47054
[32]Gohberg, I.C., Krein, M.G.: Introduction to the theory of linear nonselfadjoint operators in Hilbert space, Nauka, Moscow, 1965. English transl.: Amer. Math. Soc., Providence, RI, (1969) ·Zbl 0181.13504
[33]Juschenko, K., Todorov, I.G., Turowska, L.: Multidimensional operator multipliers. Trans. Amer. Math. Soc 361, 4683-4720 (2009) ·Zbl 1194.47040 ·doi:10.1090/S0002-9947-09-04771-0
[34]Johnson, B.E., Williams, J.P.: The range of a normal derivation. Pacific J. Math. 58, 105-122 (1975) ·Zbl 0275.47010 ·doi:10.2140/pjm.1975.58.105
[35]Kato, T.: Continuity of the map \[S\mapsto \mid S\mid S↦∣S\]∣ for linear operators. Proc. Japan Acad. 49, 157-160 (1973) ·Zbl 0301.47006 ·doi:10.3792/pja/1195519395
[36]Kissin, E., Potapov, D., Shulman, V.S., Sukochev, F.: Operator smoothness in Schatten norms for functions of several variables: Lipschitz conditions, differentiability and unbounded derivations. Proc. Lond. Math. Soc. (3) 105, 661-702 (2012) ·Zbl 1258.47022 ·doi:10.1112/plms/pds014
[37]Kissin, E., Shulman, V.S.: Operator-differentiable functions and derivations of operator algebras. Funct. Anal. Appl. 30(4), 75-77 (1996) ·Zbl 0888.46020 ·doi:10.1007/BF02509624
[38]Kissin, E., Shulman, V.S.: Classes of operator-smooth functions. I. Proc. Edinb. Math. Soc. (2) 48, 151-173 (2005) ·Zbl 1065.47010 ·doi:10.1017/S0013091503000178
[39]Kissin, E., Shulman, V.S.: Operator multipliers. Pacific J. Math 227, 109-142 (2006) ·Zbl 1130.46033 ·doi:10.2140/pjm.2006.227.109
[40]Kissin, E., Shulman, V.S.: On fully operator Lipschitz functions. J. Funct. Anal. 253, 711-728 (2007) ·Zbl 1132.47012 ·doi:10.1016/j.jfa.2007.08.007
[41]Koplienko, L.S.: The trace formula for perturbations of nonnuclear type, Sibirsk. Mat. Zh. 25:5 (1984), 62-71 (Russian). English transl.: Sib. Math. J. 25 (1984), 735-743 ·Zbl 0574.47021
[42]Krein, M.G.: On a trace formula in perturbation theory. Mat. Sbornik 33, 597-626 (1953). (Russian) ·Zbl 0052.12303
[43]Lifshitz, I.M.: On a problem in perturbation theory connected with quantum statistics. Uspekhi Mat. Nauk 7, 171-180 (1952). (Russian) ·Zbl 0046.21203
[44]Maslov, V.P.: Operator methods (Russian), Nauka, Moscow, (1973). Mir Publishers, Moscow, English Transl. Operational methods (1976) ·Zbl 0844.47013
[45]McIntosh, A.: Counterexample to a question on commutators. Proc. Amer. Math. Soc. 29, 337-340 (1971) ·Zbl 0217.45503 ·doi:10.1090/S0002-9939-1971-0276798-4
[46]Mityagin, B.S.: Normed ideals of intermediate type. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964) 819-832 ·Zbl 0124.06802
[47]Nazarov, F.L., Peller, V.V.: Functions of perturbed \[n\] n-tuples of commuting self-adjoint operators. J. Funct. Anal. 266, 5398-5428 (2014) ·Zbl 1312.47009 ·doi:10.1016/j.jfa.2014.01.013
[48]Pavlov, B.S.: On multiple operator integrals, Problems of Math. Anal., No. 2: Linear Operators and Operator Equations (Russian), 99-122. Izdat. Leningrad. Univ., Leningrad, (1969) ·Zbl 1309.47009
[49]Peetre, J.: New thoughts on Besov spaces. Duke Univ. Press, Durham, NC (1976) ·Zbl 0356.46038
[50]Peller, V.V.: Hankel operators of class \[{ S}_p\] Sp and their applications (rational approximation, Gaussian processes, the problem of majorizing operators), Mat. Sbornik, 113, : 538-581. English Transl. in Math. USSR Sbornik 41(1982), 443-479 (1980) ·Zbl 0458.47022
[51]Peller, V.V.: Hankel operators in the theory of perturbations of unitary and self-adjoint operators, Funktsional. Anal. i Prilozhen. 19:2 (1985), 37-51 (Russian). English transl.: Funct. Anal. Appl. 19 (1985) , 111-123 ·Zbl 0587.47016
[52]Peller, V.V.: For which \[f\] f does \[A-B\in{ S}_p\] A-B∈Sp imply that \[f(A)-f(B)\in{ S}_p\] f(A)-f(B)∈Sp? Operator Theory, Birkhäuser 24, 289-294 (1987) ·Zbl 0642.47007
[53]Peller, V.V.: Hankel operators in the perturbation theory of unbounded self-adjoint operators, Analysis and partial differential equations, 529-544, Lecture Notes in Pure and Appl. Math., 122, Marcel Dekker, New York, (1990) ·Zbl 1316.47018
[54]Peller, V.V.: Functional calculus for a pair of almost commuting selfadjoint operators. J. Funct. Anal. 112, 325-245 (1993) ·Zbl 0781.47024 ·doi:10.1006/jfan.1993.1036
[55]Peller, V.V.: Hankel operators and their applications. Springer-Verlag, New York (2003) ·Zbl 1030.47002 ·doi:10.1007/978-0-387-21681-2
[56]Peller, V.V.: An extension of the Koplienko-Neidhardt trace formulae. J. Funct. Anal. 221, 456-481 (2005) ·Zbl 1067.47019 ·doi:10.1016/j.jfa.2004.10.004
[57]Peller, V.V.: Multiple operator integrals and higher operator derivatives. J. Funct. Anal. 233, 515-544 (2006) ·Zbl 1102.46024 ·doi:10.1016/j.jfa.2005.09.003
[58]Peller, V.V.: Differentiability of functions of contractions, In: Linear and complex analysis, AMS Translations, Ser. 2 226 (2009), 109-131, AMS, Providence ·Zbl 1183.47009
[59]Pincus, J.D.: Commutators and systems of singular integral equations. I, Acta Math. 121, 219-249 (1968) ·Zbl 0179.44601 ·doi:10.1007/BF02391914
[60]Pisier, G.: Introduction to operator space theory, London Math. Society Lect. Notes series 294, Cambridge University Press, (2003) ·Zbl 1093.46001
[61]Potapov, D., Sukochev, F.: Operator-Lipschitz functions in Schatten-von Neumann classes. Acta Math. 207, 375-389 (2011) ·Zbl 1242.47013 ·doi:10.1007/s11511-012-0072-8
[62]Potapov, D., Skripka, A., Sukochev, F.: Spectral shift function of higher order. Invent. Math. 193, 501-538 (2013) ·Zbl 1282.47012 ·doi:10.1007/s00222-012-0431-2
[63]Rudin, W.: Functional analysis. McGraw Hill, (1991) ·Zbl 0867.46001
[64]Sten’kin, V.V.: Multiple operator integrals. Izv. Vyssh. Uchebn. Zaved. Matematika 4(79), 102-115 (1977). (Russian) ·Zbl 0365.47007
[65]Titchmarsh, E.C.: The theory of functions. Oxford University Press, Oxford (1958) ·Zbl 0084.09401
[66]Triebel, H.: Theory of function spaces, Monographs in Mathematics, 78. Birkhäuser Verlag, Basel (1983) ·Zbl 1235.46002 ·doi:10.1007/978-3-0346-0416-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp