35B06 | Symmetries, invariants, etc. in context of PDEs |
35B50 | Maximum principles in context of PDEs |
35R11 | Fractional partial differential equations |
[1] | Alexandrov, A.D.: A characteristic property of the spheres. Ann. Math. Pura Appl. 58, 303-315 (1962) ·Zbl 0107.15603 ·doi:10.1007/BF02413056 |
[2] | Barlow, M.T., Bass, R.F., Chen, Z.-Q., Kassmann, M.: Non-local Dirichlet forms and symmetric jump processes. Trans. Am. Math. Soc. 361(4), 1963-1999 (2009) ·Zbl 1166.60045 ·doi:10.1090/S0002-9947-08-04544-3 |
[3] | Bass, R.F., Kassmann, M.: Harnack inequalities for non-local operators of variable order. Trans. Am. Math. Soc. 357(2), 837-850 (2004) ·Zbl 1052.60060 ·doi:10.1090/S0002-9947-04-03549-4 |
[4] | Barrios, B., Montoro, L., Sciunzi, B.: On the moving plane method for nonlocal problems in bounded domains. arXiv:1405.5402 ·Zbl 1394.35545 |
[5] | Berestycki, H., Nirenberg, L.: On the method of moving planes and the sliding method. Bol. Soc. Bras. Math. 22(1), 1-37 (1991) ·Zbl 0784.35025 ·doi:10.1007/BF01244896 |
[6] | Birkner, M., López-Mimbela, J.A., Wakolbinger, A.: Comparison results and steady states for the Fujita equation with fractional Laplacian. Ann. L’Inst. Henri Poincaré 22, 83-97 (2005) ·Zbl 1075.60081 ·doi:10.1016/j.anihpc.2004.05.002 |
[7] | Bogdan, K., Byczkowski, T.: Potential theory of Schrödinger operator based on fractional Laplacian. Probab. Math. Stat. 2(20), 293-335 (2000) ·Zbl 0996.31003 |
[8] | Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245-1260 (2007) ·Zbl 1143.26002 ·doi:10.1080/03605300600987306 |
[9] | Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. Henri Poincare Anal. Non Linaire 31, 23-53 (2014) ·Zbl 1286.35248 ·doi:10.1016/j.anihpc.2013.02.001 |
[10] | Chen, W., Fang, Y., Yang, R.: Semilinear equations involving the fractional Laplacian on domains. arXiv:1309.7499v1 ·Zbl 0918.60068 |
[11] | Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59, 330-343 (2006) ·Zbl 1093.45001 ·doi:10.1002/cpa.20116 |
[12] | Chen, Z.-Q., Song, R.: Estimates on Green function and Poisson kernels for symmetric stable processes. Math. Ann. 312, 465-501 (1998) ·Zbl 0918.60068 ·doi:10.1007/s002080050232 |
[13] | Fall, M. M., Jarohs, S.: Overdetermined problems with fractional Laplacian. ESAIM Control Optim. Calc Var. arXiv:1311.7549 ·Zbl 1329.35223 |
[14] | Felmer, P., Wang, Y.: Radial symmetry of positive solutions involving the fractional Laplacian. Commun. Contemp. Math. (2013). doi:10.1142/S0219199713500235 ·Zbl 1286.35016 |
[15] | Felsinger, M., Kassmann, M.: Local regularity for parabolic nonlocal operators. Comm. Partial Differ. Equ. 38(9), 1539-1573 (2013) ·Zbl 1277.35090 ·doi:10.1080/03605302.2013.808211 |
[16] | Felsinger, M., Kassmann, M., Voigt, P.: The Dirichlet problem for nonlocal operators. Math. Z. arXiv:1309.5028 ·Zbl 1317.47046 |
[17] | Frank, R. L., Lenzmann, E., Silvestre, L.: Uniqueness of radial solutions for the fractional Laplacian. arXiv:1302.2652 ·Zbl 1365.35206 |
[18] | Gidas, B., Ni, W.N., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68(3), 209-243 (1979) ·Zbl 0425.35020 ·doi:10.1007/BF01221125 |
[19] | Kassmann, M., Mimica, A.: Intrinsic scaling properties for nonlocal operators. arXiv:1310.5371 ·Zbl 1371.35316 |
[20] | Jarohs, S., Weth, T.: Asymptotic symmetry for parabolic equations involving the fractional Laplacian. Discret. Contin. Dyn. Syst. Ser. A 34(6), 2581-2615 (2014) ·Zbl 1284.35028 |
[21] | Poláčik, P., Terracini, S.: Nonnegative solutions with a nontrivial nodal set for elliptic equations on smooth symmetric domains. Proc. Am. Math. Soc. 142(4), 1249-1259 (2014) ·Zbl 1286.35109 ·doi:10.1090/S0002-9939-2014-11942-3 |
[22] | Reed, M., Simon, B.: Methods of Modern Mathematical Physics: I Functional Analysis. Academic Press, San Diego (1980) ·Zbl 0459.46001 |
[23] | Ros-Oton, X., Serra, J.: The extremal solution for the fractional Laplacian. arXiv:1305.2489 ·Zbl 1301.35204 |
[24] | Serrin, J.: A symmetry problem in potential theory. Arch. Ration. Mech. Anal. 43, 304-318 (1971) ·Zbl 0222.31007 ·doi:10.1007/BF00250468 |
[25] | Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discret. Contin. Dyn. Syst. 33(5), 2105-2137 (2013) ·Zbl 1303.35121 |