Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Symmetry via antisymmetric maximum principles in nonlocal problems of variable order.(English)Zbl 1346.35010

The authors study nonlinear problems of the type \(Iu=f(x,u)\) in \(\Omega\), \(u=0\) on \(\mathbb R^N\setminus\Omega\), for open bounded \(\Omega\). Here \(I\) is nonlocal, e.g. a fractional Laplacian, and of varying order. Under structural assumptions on \(I\), \(\Omega\) and \(f\) with respect to a fixed direction \(\xi\) they prove Steiner symmetry of solutions with a new variant of the maximum principle.

MSC:

35B06 Symmetries, invariants, etc. in context of PDEs
35B50 Maximum principles in context of PDEs
35R11 Fractional partial differential equations

Cite

References:

[1]Alexandrov, A.D.: A characteristic property of the spheres. Ann. Math. Pura Appl. 58, 303-315 (1962) ·Zbl 0107.15603 ·doi:10.1007/BF02413056
[2]Barlow, M.T., Bass, R.F., Chen, Z.-Q., Kassmann, M.: Non-local Dirichlet forms and symmetric jump processes. Trans. Am. Math. Soc. 361(4), 1963-1999 (2009) ·Zbl 1166.60045 ·doi:10.1090/S0002-9947-08-04544-3
[3]Bass, R.F., Kassmann, M.: Harnack inequalities for non-local operators of variable order. Trans. Am. Math. Soc. 357(2), 837-850 (2004) ·Zbl 1052.60060 ·doi:10.1090/S0002-9947-04-03549-4
[4]Barrios, B., Montoro, L., Sciunzi, B.: On the moving plane method for nonlocal problems in bounded domains. arXiv:1405.5402 ·Zbl 1394.35545
[5]Berestycki, H., Nirenberg, L.: On the method of moving planes and the sliding method. Bol. Soc. Bras. Math. 22(1), 1-37 (1991) ·Zbl 0784.35025 ·doi:10.1007/BF01244896
[6]Birkner, M., López-Mimbela, J.A., Wakolbinger, A.: Comparison results and steady states for the Fujita equation with fractional Laplacian. Ann. L’Inst. Henri Poincaré 22, 83-97 (2005) ·Zbl 1075.60081 ·doi:10.1016/j.anihpc.2004.05.002
[7]Bogdan, K., Byczkowski, T.: Potential theory of Schrödinger operator based on fractional Laplacian. Probab. Math. Stat. 2(20), 293-335 (2000) ·Zbl 0996.31003
[8]Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245-1260 (2007) ·Zbl 1143.26002 ·doi:10.1080/03605300600987306
[9]Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. Henri Poincare Anal. Non Linaire 31, 23-53 (2014) ·Zbl 1286.35248 ·doi:10.1016/j.anihpc.2013.02.001
[10]Chen, W., Fang, Y., Yang, R.: Semilinear equations involving the fractional Laplacian on domains. arXiv:1309.7499v1 ·Zbl 0918.60068
[11]Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59, 330-343 (2006) ·Zbl 1093.45001 ·doi:10.1002/cpa.20116
[12]Chen, Z.-Q., Song, R.: Estimates on Green function and Poisson kernels for symmetric stable processes. Math. Ann. 312, 465-501 (1998) ·Zbl 0918.60068 ·doi:10.1007/s002080050232
[13]Fall, M. M., Jarohs, S.: Overdetermined problems with fractional Laplacian. ESAIM Control Optim. Calc Var. arXiv:1311.7549 ·Zbl 1329.35223
[14]Felmer, P., Wang, Y.: Radial symmetry of positive solutions involving the fractional Laplacian. Commun. Contemp. Math. (2013). doi:10.1142/S0219199713500235 ·Zbl 1286.35016
[15]Felsinger, M., Kassmann, M.: Local regularity for parabolic nonlocal operators. Comm. Partial Differ. Equ. 38(9), 1539-1573 (2013) ·Zbl 1277.35090 ·doi:10.1080/03605302.2013.808211
[16]Felsinger, M., Kassmann, M., Voigt, P.: The Dirichlet problem for nonlocal operators. Math. Z. arXiv:1309.5028 ·Zbl 1317.47046
[17]Frank, R. L., Lenzmann, E., Silvestre, L.: Uniqueness of radial solutions for the fractional Laplacian. arXiv:1302.2652 ·Zbl 1365.35206
[18]Gidas, B., Ni, W.N., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68(3), 209-243 (1979) ·Zbl 0425.35020 ·doi:10.1007/BF01221125
[19]Kassmann, M., Mimica, A.: Intrinsic scaling properties for nonlocal operators. arXiv:1310.5371 ·Zbl 1371.35316
[20]Jarohs, S., Weth, T.: Asymptotic symmetry for parabolic equations involving the fractional Laplacian. Discret. Contin. Dyn. Syst. Ser. A 34(6), 2581-2615 (2014) ·Zbl 1284.35028
[21]Poláčik, P., Terracini, S.: Nonnegative solutions with a nontrivial nodal set for elliptic equations on smooth symmetric domains. Proc. Am. Math. Soc. 142(4), 1249-1259 (2014) ·Zbl 1286.35109 ·doi:10.1090/S0002-9939-2014-11942-3
[22]Reed, M., Simon, B.: Methods of Modern Mathematical Physics: I Functional Analysis. Academic Press, San Diego (1980) ·Zbl 0459.46001
[23]Ros-Oton, X., Serra, J.: The extremal solution for the fractional Laplacian. arXiv:1305.2489 ·Zbl 1301.35204
[24]Serrin, J.: A symmetry problem in potential theory. Arch. Ration. Mech. Anal. 43, 304-318 (1971) ·Zbl 0222.31007 ·doi:10.1007/BF00250468
[25]Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discret. Contin. Dyn. Syst. 33(5), 2105-2137 (2013) ·Zbl 1303.35121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp