Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Non semi-simple \({\mathfrak {sl}(2)}\) quantum invariants, spin case.(English)Zbl 1345.57019

F. Costantino et al. [J. Topol. 7, No. 4, 1005–1053 (2014;Zbl 1320.57016)] constructed invariants of 3-manifolds equipped with a 1-dimensional cohomology class over \(\mathbb{C}/2\mathbb{Z}\), using a non semi-simple representation category of quantum \(\mathfrak{sl}(2)\) with quantum parameter \(q\) a root of unity of order \(2r\) with \(r>1,r\not\equiv0\pmod{4}\).
In the paper under review, the authors consider the case \(r\equiv0\pmod4\). They obtain invariants for 3-manifolds with a kind of generalized spin structures. The generalized spin structure for a 3-manifold \(M\) is non-canonically parametrized by \(H^1(M; \mathbb{C}/2\mathbb{Z})\).

MSC:

57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
17B37 Quantum groups (quantized enveloping algebras) and related deformations

Citations:

Zbl 1320.57016

Cite

References:

[1]Akutsu, Y., Deguchi, T., Ohtsuki, T.: Invariants of colored links. J. Knot Theory Ramifications 1 (2), 161-184 (1992) ·Zbl 0758.57004 ·doi:10.1142/S0218216592000094
[2]Beliakova, A., Blanchet, C., Contreras, E.: In progress ·Zbl 0938.57009
[3]Blanchet, C.: Invariants of 3-manifolds with spin structure. Comment. Math. Helv. 67, 406-427 (1992) ·Zbl 0771.57005 ·doi:10.1007/BF02566511
[4]Blanchet, C.: Hecke algebras, modular categories and 3-manifolds quantum invariants. Topology 39, 193-223 (2000) ·Zbl 0938.57009 ·doi:10.1016/S0040-9383(98)00066-4
[5]Blanchet, C.: A spin decomposition of the Verlinde formulas for type A modular categories. Comm. Math. Phys. 257 (1), 1-28 (2005) ·Zbl 1079.81061 ·doi:10.1007/s00220-005-1341-6
[6]Blanchet, C., Costantino, F., Geer, N., Patureau-Mirand, B.: Non Semi-simple TQFTs. Reidemeister torsion and Kashaev’s Invariants. arXiv:http://arxiv.org/abs/1404.7289 ·Zbl 1412.57025
[7]Blanchet, C., Masbaum, G.: Topological quantum field theories for surfaces with spin structure. Duke Math. J. 82, 229-267 (1996) ·Zbl 0854.57025 ·doi:10.1215/S0012-7094-96-08211-3
[8]Costantino, F., Geer, N., Patureau-Mirand, B.: Quantum invariants of 3-manifolds via link surgery presentations and non-semi-simple categories. J. Topology (2014). http://dx.doi.org/10.1112/jtopol/jtu006 ·Zbl 1320.57016
[9]Costantino, F., Geer, N., Patureau-Mirand, B.: Relations between Witten-reshetikhin-turaev and Non semi-simple 𝔰𝔩 \((2){\mathfrak{sl}(2)} 3\)-manifold Invariants. To appear on Algebraic Geometry and Topology (2014). arXiv:http://arxiv.org/abs/1310.2735 ·Zbl 1320.57024
[10]Costantino, F., Geer, N., Patureau-Mirand, B.: Some remarks on the unrolled quantum group of 𝔰𝔩 \((2){\mathfrak{sl}(2)} \). To appear on Journal of Pure and Applied Algebra (2014). arXiv:http://arxiv.org/abs/1406.0410 ·Zbl 1355.17010
[11]Costantino, F., Murakami, J.: On SL(2,ℂ)\(SL(2, \mathbb{C})\) quantum 6j-symbols and their relation to the hyperbolic volume. Quantum Topol. 4 (3), 303-351 (2013) ·Zbl 1280.57013 ·doi:10.4171/QT/41
[12]Geer, N., Patureau-Mirand, B., Turaev, V.: Modified quantum dimensions and re-normalized link invariants. Compos. Math. 145 (1), 196-212 (2009) ·Zbl 1160.81022 ·doi:10.1112/S0010437X08003795
[13]Gompf, R., Stipsicz, A.: 4-manifolds and Kirby Calculus. Am. Math. Soc. Providence (RI) (1999) ·Zbl 0933.57020
[14]Kirby, R., Melvin, P.: The 3-manifold invariants of Witten and Reshetikhin-Turaev for 𝔰𝔩(2,ℂ)\( \mathfrak{sl} (2, \mathbb{C})\). Invent. Math. 105, 473-545 (1991) ·Zbl 0745.57006 ·doi:10.1007/BF01232277
[15]Milnor, J.: Spin structures on manifolds. Enseign. Math. II (9), 198-203 (1963) ·Zbl 0116.40403
[16]Murakami, H.: Quantum invariants for 3-manifolds. In: Ko, K.H., Jin, G.T. (eds.) Proc. Appl. Math. Workshops, 4, The 3rd Korea-Japan School of Knots and Links, pp 129-143 (1994) ·Zbl 1079.81061
[17]Turaev, V.G.: Quantum invariants of knots and 3-manifolds. de Gruyter Studies in Mathematics, Vol. 18. Walter de Gruyter & Co., Berlin (1994) ·Zbl 0812.57003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp