Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A singular Demailly-Păun theorem. (Un théorème de Demailly-Păun singulier.)(English. French summary)Zbl 1344.32005

The Demailly-Păun theorem [J.-P. Demailly andM. Paun, Ann. Math. (2) 159, No. 3, 1247–1274 (2004;Zbl 1064.32019)] gives a precise numerical description of the Kähler cone \(\mathcal{K}(X)\) of a compact Kähler manifold \(X\). The cone \(\mathcal{K}(X)\) is a connected component of the set of all real \((1,1)\)-cohomology classes \(\{\alpha\}\) on \(X\) with the property \(\int_Y\alpha^{\dim Y}>0\) for every positive-dimensional irreducible analytic subvariety \(Y\) in \(X\). Moreover \(\{\alpha\}\) lies in the closure of \(\mathcal{K}(X)\) if and only if there exists a Kähler metric \(\omega\) on \(X\) such that \(\int_Y\alpha^k\wedge\omega^{\dim Y-k}\geq 0\) for all those \(Y\) and \(1\leq k\leq \dim Y\).
The authors of the article under review present an extension of this theorem to compact analytic subvarieties \(E\) of (not necessarily compact) Kähler manifolds \((M,\omega)\). Let \(\alpha\) be a closed smooth real \((1,1)\)-form on \(M\) with the property \(\int_V\alpha^k\wedge\omega^{\dim V-k}>0\) for all positive-dimensional irreducible analytic subvarieties \(V\subset E\) and for all \(1\leq k\leq\dim V\). Then there exists an open neighborhood \(U\) of \(E\) in \(M\) and a smooth function \(\varphi:U\rightarrow\mathbb R\) such that \(\alpha + i\partial\overline{\partial}\varphi\) is a Kähler metric on \(U\). If, in addition, \(M\) is an open subset of some projective variety, then the condition \(\int_V\alpha^{\dim V}>0\) is sufficient for the conclusion.
The proof uses induction on \(\dim E\) and the resolution of the singularities of \(E\) by a suitable modification \(\hat{M}\rightarrow M\). Main tools are the Demailly-Păun theorem and results and techniques from the authors’ paper [Invent. Math. 202, No. 3, 1167–1198 (2015;Zbl 1341.32016)]. The final construction of \(\varphi\) uses a refinement of a gluing procedure which goes back toR. Richberg [Math. Ann. 175, 257–286 (1968;Zbl 0153.15401)].

MSC:

32J25 Transcendental methods of algebraic geometry (complex-analytic aspects)

Cite

References:

[1]Campana, F.; Peternell, T., Algebraicity of the ample cone of projective varieties, J. Reine Angew. Math., 407, 160-166 (1990) ·Zbl 0728.14004
[2]Chiose, I., The Kähler rank of compact complex manifolds, J. Geom. Anal. (2015), in press
[3]Collins, T.; Tosatti, V., Kähler currents and null loci, Invent. Math., 202, 3, 1167-1198 (2015) ·Zbl 1341.32016
[4]Conlon, R. J.; Hein, H.-J., Asymptotically conical Calabi-Yau manifolds, I, Duke Math. J., 162, 15, 2855-2902 (2013) ·Zbl 1283.53045
[5]Conlon, R. J.; Hein, H.-J., Asymptotically conical Calabi-Yau manifolds, III, preprint ·Zbl 1283.53045
[7]Demailly, J.-P.; Păun, M., Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. (2), 159, 3, 1247-1274 (2004) ·Zbl 1064.32019
[8]Kleiman, S. L., Toward a numerical theory of ampleness, Ann. of Math. (2), 84, 293-344 (1966) ·Zbl 0146.17001
[9]Păun, M., Sur l’effectivité numérique des images inverses de fibrés en droites, Math. Ann., 310, 3, 411-421 (1998) ·Zbl 1023.32014
[10]Richberg, R., Stetige streng pseudokonvexe Funktionen, Math. Ann., 175, 257-286 (1968) ·Zbl 0153.15401
[11]Smith, P. A.N., Smoothing plurisubharmonic functions on complex spaces, Math. Ann., 273, 3, 397-413 (1986) ·Zbl 0562.31007
[12]Varouchas, J., Kähler spaces and proper open morphisms, Math. Ann., 283, 1, 13-52 (1989) ·Zbl 0632.53059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp