[1] | Adamidis, K. and Loukas, S. (1998). A lifetime distribution with decreasing failure rate. Statistics and Probability Letters, 39, 35-42. ·Zbl 0908.62096 ·doi:10.1016/S0167-7152(98)00012-1 |
[2] | Adamidis, K., Dimitrakopoulou, T. and Loukas, S. (2005). On a generalization of the exponential-geometric distribution. Statististics and Probability Letters, 73, 259-269. ·Zbl 1075.62008 ·doi:10.1016/j.spl.2005.03.013 |
[3] | Alexander, C., Cordeiro, G.M., Ortega, E.M.M. and Sarabia, J.M. (2012). Generalized beta-generated distributions. Computational Statistics and Data Analysis, 56, 1880-1897. ·Zbl 1245.60015 ·doi:10.1016/j.csda.2011.11.015 |
[4] | Barreto-Souza, W., de Morais, A.L. and Cordeiro, G.M. (2011). The Weibull-geometric distribution. Journal of Statistical Computation and Simulation, 73, 259-269. |
[5] | Cancho, V. G., Ortega, E.M.M. and Bolfarine, H. (2009). The Log-Exponentiated-Weibull Regression Models with Cure Rate: Local Influence and Residual Analysis. Journal of Data Science,7, 433-458. |
[6] | Cancho, V.G., Ortega, E.M.M., Barriga, G.D.C. and Hashimoto, E. M. (2011). The Conway-Maxwell-Poisson-generalized gamma regression model with long-term survivors. Journal of Statistical Computation and Simulation, 81, 1461-1481. ·Zbl 1431.62491 ·doi:10.1080/00949655.2010.491827 |
[7] | Cooner, F., Banerjee, S., Carlin, B.P. and Sinha, D. (2007). Flexible cure rate modeling under latent activation schemes. Journal of the American Statistical Association, 102, 560-572. ·Zbl 1172.62331 |
[8] | Cordeiro, G.M., Silva, G.O. and Ortega, E.M.M. (2013). The beta-Weibull geometric distribution. Statistics, 47, 817-834. ·Zbl 1202.62018 ·doi:10.1016/j.jfranklin.2010.06.010 |
[9] | Corderio, G.M., Hashimoto, E.H. and Ortega, E.M.M. (2014). The McDonald Weibull model. Statistics, 48, 256-278. ·Zbl 1440.62059 ·doi:10.1080/02331888.2011.577897 |
[10] | Doornik, J.A. (2007). An Object-Oriented Matrix Language Ox 5. Timberlake Consultants Press, London. ·Zbl 1291.62175 ·doi:10.1080/02331888.2012.748769 |
[11] | Ferrarri-Junior, N.M., Muller, H., Ribeiro, M., Maia, M. and Sanches-Junior, J. A. (2008). Cutaneous Melanoma: Descriptive Epidemiological Study. São Paulo Medical Journal,126, 41-47. |
[12] | Gradshteyn, I. S. and Ryzhik, I. M. (2000). Table of Integrals, Series and Products (sixth edition). San Diego: Academic Press. ·Zbl 0981.65001 ·doi:10.1590/S1516-31802008000100008 |
[13] | Hashimoto, E.M., Ortega, E.M.M., Cordeiro, G.M. and Barreto, M.L. (2012). The Log-Burr XII Regression Model for Grouped Survival Data. Journal of Biopharmaceutical Statistics, 22, 141-159. ·Zbl 0981.65001 |
[14] | Ibrahim, J. G., Chen, M.H. and Sinha, D. (2001). Bayesian Survival Analysis. New York, Springer. ·Zbl 0978.62091 ·doi:10.1080/10543406.2010.509527 |
[15] | Lee, C., Famoye, F. and Olumolade, O. (2007). Beta Weibull distribution: some properties and applications to censored data. Journal of Modern Applied Statistical Methods, 6, 173-186. ·Zbl 0978.62091 ·doi:10.1007/978-1-4757-3447-8 |
[16] | Mudholkar, G.S., Srivastava, D.K. and Freimer, M. (1995). The exponentiated Weibull family: a reanalysis of the bus-motor-failure data. Technometrics, 37, 436-445. ·Zbl 0900.62531 |
[17] | Nadarajah, S., Cordeiro, G.M. and Ortega, E.M.M. (2009). The exponentiated Weibull distribution: a survey. Statistical Papers, 54, 839-877. ·Zbl 0900.62531 ·doi:10.1080/00401706.1995.10484376 |
[18] | Ortega, E.M.M., Cancho, V.G. and Paula G.A. (2009). Generalized log-gamma regression models with cure fraction. Lifetime Data Analysis, 15, 79-106. ·Zbl 1302.62236 ·doi:10.1007/s10985-008-9096-y |
[19] | Ortega, E.M.M., Cordeiro, G.M. and Pascoa, M.A.R. (2011). The Generalized Gamma Geometric Distribution. Journal of Statistical Theory and Applications,10, 433-454. |
[20] | Parker, S. L., Tong, T., Bolden, S. and Wingo, P. (1996). Cancer Statistics, CA A Cancer. Journal for Clinicians, 46, 5-27. ·doi:10.3322/canjclin.46.1.5 |
[21] | Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I. (1986). Integrals and Series, vol. 1. Gordon and Breach Science Publishers, Amsterdam. ·Zbl 0606.33001 |
[22] | Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I., (1992). Integrals and Series, vol. 4. Gordon and Breach Science Publishers, Amsterdam. ·Zbl 0786.44003 |
[23] | Scheike, T. (2009). Timereg Package. R Package Version 1.1-0. With contributions from T. Martinussen and J. Silver. R package version 1.1-6. http://dirk.eddelbuettel.com/cranberries/2009/03/30/. ·Zbl 1245.60015 |
[24] | Silva, G.O., Ortega, E.M.M., Garibay, V.C. and Barreto, M.L. (2008). Log-Burr XII regression models with censored Data. Computational Statistics and Data Analysis,52, 3820-3842. ·Zbl 1452.62847 ·doi:10.1016/j.csda.2008.01.003 |
[25] | Silva, G.O., Ortega, E.M.M. and Paula, G.A. (2011). Residuals for Log-Burr XII Regression Models in Survival Analysis. Journal of Applied Statistics,38, 1435-1445. ·Zbl 1218.62103 ·doi:10.1080/02664763.2010.505950 |
[26] | Silva, M.A., Bezerra-Silva, G.C.D., Vendramim, J.D. and Mastrangelo, T. (2013). Sublethal effect of neem extract on Mediterranean fruit fly adults. Revista Brasileira de Fruticultura,35, 93-101. ·doi:10.1590/S0100-29452013000100012 |
[27] | Tsodikov, A.D., Ibrahim, J.G. and Yakovlev, A.Y. (2003). Estimating cure rates from survival data: an alternative to two-component mixture models. Journal of the American Statistical Association, 98, 1063-1078. ·doi:10.1198/01622145030000001007 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.