Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A multilevel multiscale mimetic (M\(^3\)) method for two-phase flows in porous media.(English)Zbl 1338.76096

Summary: We describe a multilevel multiscale mimetic (M\(^{3})\) method for solving two-phase flow (water and oil) in a heterogeneous reservoir. The governing equations are the elliptic equation for the reservoir pressure and the hyperbolic equation for the water saturation. On each time step, we first solve the pressure equation and then use the computed flux in an explicit upwind finite volume method to update the saturation. To reduce the computational cost, the pressure equation is solved on a much coarser grid than the saturation equation. The coarse-grid pressure discretization captures the influence of multiple scales via the subgrid modeling technique for single-phase flow recently proposed in [Yu. A. Kuznetsov, J. Numer. Math. 14, No. 4, 305–315 (2006;Zbl 1122.65112);V. Gvozdev, Discretizations of the diffusion and Maxwell equations on polyhedral meshes. Technical Report Ph. D. Thesis, University of Houston, 2007,http://gradworks.umi.com/32/63/3263411.html;Yu. A. Kuznetsov, Comput. Methods Appl. Sci. 16, 27–41 (2008;Zbl 1149.65324)]. We extend significantly the applicability of this technique by developing a new robust and efficient method for estimating the flux coarsening parameters. Specifically, with this advance the M\(^{3}\) method can handle full permeability tensors and general coarsening strategies, which may generate polygonal meshes on the coarse grid. These problem dependent coarsening parameters also play a critical role in the interpolation of the flux, and hence, in the advection of saturation for two-phase flow. Numerical experiments for two-phase flow in highly heterogeneous permeability fields, including layer 68 of the SPE Tenth Comparative Solution Project, demonstrate that the M\(^{3}\) method retains good accuracy for high coarsening factors in both directions, up to 64 for the considered models. Moreover, we demonstrate that with a simple and efficient temporal updating strategy for the coarsening parameters, we achieve accuracy comparable to the fine-scale solution, but at a fraction of the cost.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76S05 Flows in porous media; filtration; seepage
76T99 Multiphase and multicomponent flows

Software:

AMG1R5;GSLIB

Cite

References:

[1]Aarnes, J. E., On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation, Multiscale Model Simulat., 2, 3, 421-439 (2004) ·Zbl 1181.76125
[2]Aarnes, J. E.; Kippe, V.; Lie, K.-A., Mixed multiscale finite elements and streamline methods for reservoir simulation of large geomodels, Adv. Water Resour., 28, 3, 257-271 (2005)
[3]Babuška, I.; Osborn, J. E., Generalized finite element methods: their performance and their relation to mixed methods, SIAM J. Numer. Anal., 20, 3, 510-536 (1983) ·Zbl 0528.65046
[4]Bensoussan, A.; Lions, J.-L.; Papanicolaou, G., Asymptotic Analysis For Periodic Structures, of Studies in Mathematics and its Applications, vol. 5 (1978), North-Holland: North-Holland New York ·Zbl 0411.60078
[5]Brezina, M.; Falgout, R.; MacLachlan, S.; Manteuffel, T.; McCormick, S.; Ruge, J., Adaptive smoothed aggregation \(( \alpha\) SA) multigrid, SIAM Rev., 47, 2, 317-346 (2005) ·Zbl 1075.65042
[6]Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods. Mixed and Hybrid Finite Element Methods, Number 15 in Springer Series in Computational Mathematics (1991), Springer-Verlag: Springer-Verlag New York ·Zbl 0788.73002
[7]Brezzi, F.; Lipnikov, K.; Shashkov, M.; Simoncini, V., A new discretization methodology for diffusion problems on generalized polyhedral meshes, Comput. Method Appl. M., 196, 37-40, 3682-3692 (2007) ·Zbl 1173.76370
[8]Brezzi, F.; Lipnikov, K.; Simoncini, V., A family of mimetic finite difference methods on polygonal and polyhedral meshes, Math. Mod. Methods Appl. Syst., 15, 10, 1533-1551 (2005) ·Zbl 1083.65099
[9]Chen, Z.; Hou, T. Y., A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Math. Comput., 72, 242, 541-576 (2003) ·Zbl 1017.65088
[10]Chen, Z.; Huan, G.; Ma, Y., Computational Methods for Multiphase Flows in Porous Media. Computational Methods for Multiphase Flows in Porous Media, Computational Science and Engineering Series (2006), SIAM: SIAM Philadelphia, PA ·Zbl 1092.76001
[11]Dendy, J. E., Black box multigrid, J. Comput. Phys., 48, 366-386 (1982) ·Zbl 0495.65047
[12]Dendy, J. E., Two multigrid methods for three-dimensional problems with discontinuous and anisotropic coefficients, SIAM J. Sci. Stat. Comput., 8, 2, 673-685 (1987) ·Zbl 0659.65097
[13]Deutsch, C. V.; Journel, A. G., GSLIB: Geostatical Software Library and User’s Guide (1998), Oxford University Press: Oxford University Press New York
[14]Efendiev, Y.; Ginting, V.; Hou, T.; Ewing, R., Accurate multiscale finite element methods for two-phase flow simulations, J. Comput. Phys., 220, 1, 155-174 (2006) ·Zbl 1158.76349
[15]Forsyth, P. A., Numerical simulation of gas venting for NAPL site remediation, Soc. Pet. Eng. AIME Paper SPE, 18415, 85-96 (1989)
[16]Forsyth, P. A., A control volume finite element approach to NAPL groundwater contamination, SIAM J. Scient. Statist. Comput., 12, 5, 1029-1057 (1991) ·Zbl 0725.76087
[17]V. Gvozdev, Discretization of the diffusion and Maxwell equations on polyhedral meshes, Technical Report Ph.D. Thesis, University of Houston, 2007.; V. Gvozdev, Discretization of the diffusion and Maxwell equations on polyhedral meshes, Technical Report Ph.D. Thesis, University of Houston, 2007.
[18]Hou, T. Y.; Wu, X. H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134, 169-189 (1997) ·Zbl 0880.73065
[19]Jenny, P.; Lee, S. H.; Tchelepi, H. A., Adaptive multiscale finite-volume method for multiphase flow and transport in porous media, Multiscale Model. Simulat., 3, 1, 50-64 (2004), September 2004; 2004-2005. ·Zbl 1160.76372
[20]Jikov, V. V.; Kozlov, S. M.; Oleinik, O. A., Homogenization of Differential Operators and Integral Functionals (1994), Springer-Verlag: Springer-Verlag Translated from Russian ·Zbl 0801.35001
[21]V. Kippe, J.E. Aarnes, K.-A. Lie. A comparison of multiscale methods for elliptic problems in porous media flow. Computat. Geosci., Special Issue on Multiscale Methods, 2008, doi:10.1007/s10596-007-9074-6; V. Kippe, J.E. Aarnes, K.-A. Lie. A comparison of multiscale methods for elliptic problems in porous media flow. Computat. Geosci., Special Issue on Multiscale Methods, 2008, doi:10.1007/s10596-007-9074-6 ·Zbl 1259.76047
[22]Kuznetsov, Yu., Mixed finite element methods on polyhedral meshes for diffusion equations, (Computational Modeling with PDEs in Science and Engineering (2008), Springer-Verlag: Springer-Verlag Berlin) ·Zbl 1149.65324
[23]Kuznetsov, Yu. A., Mixed finite element method for diffusion equations on polygonal meshes with mixed cells, J. Numer. Math., 14, 4, 305-315 (2006) ·Zbl 1122.65112
[24]MacLachlan, S. P.; Moulton, J. D., Multilevel upscaling through variational coarsening, Water Resour. Res., 42 (2006)
[25]Prakash, C., Examination of the upwind (donor-cell) formulation in control volume finite-element methods for fluid flow and heat transfer, Numer. Heat Transfer, 11, 4, 401-416 (1987)
[26]Ruge, J. W.; Stüben, K., Algebraic multigrid (AMG), (McCormick, S. F., Multigrid Methods. Multigrid Methods, Frontiers in Applied Mathematics, vol. 3 (1987), SIAM: SIAM Philadelphia, PA), 73-130 ·Zbl 0659.65094
[27]Strouboulis, T.; Zhang, L.; Babuška, I., p-version of the generalized FEM using mesh-based handbooks with applications to multiscale problems, Int. J. Numer. Meth. Eng., 60, 10, 1639-1672 (2004) ·Zbl 1059.65106
[28]Stüben, K., Algebraic multigrid (AMG): experiences and comparisons, Appl. Math. Comput., 13, 419-451 (1983) ·Zbl 0533.65064
[29]Stüben, K., A review of algebraic multigrid, J. Comput. Appl. Math., 128, 1-2, 281-309 (2001) ·Zbl 0979.65111
[30]Vanek, P.; Mandel, J.; Brezina, M., Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Computing, 56, 3, 179-196 (1996) ·Zbl 0851.65087
[31]Yang, Shi-tien; Henry, A. F., A finite element synthesis method, Nucl. Sci. Eng., 59, 1, 63-67 (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp