[1] | Aarnes, J. E., On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation, Multiscale Model Simulat., 2, 3, 421-439 (2004) ·Zbl 1181.76125 |
[2] | Aarnes, J. E.; Kippe, V.; Lie, K.-A., Mixed multiscale finite elements and streamline methods for reservoir simulation of large geomodels, Adv. Water Resour., 28, 3, 257-271 (2005) |
[3] | Babuška, I.; Osborn, J. E., Generalized finite element methods: their performance and their relation to mixed methods, SIAM J. Numer. Anal., 20, 3, 510-536 (1983) ·Zbl 0528.65046 |
[4] | Bensoussan, A.; Lions, J.-L.; Papanicolaou, G., Asymptotic Analysis For Periodic Structures, of Studies in Mathematics and its Applications, vol. 5 (1978), North-Holland: North-Holland New York ·Zbl 0411.60078 |
[5] | Brezina, M.; Falgout, R.; MacLachlan, S.; Manteuffel, T.; McCormick, S.; Ruge, J., Adaptive smoothed aggregation \(( \alpha\) SA) multigrid, SIAM Rev., 47, 2, 317-346 (2005) ·Zbl 1075.65042 |
[6] | Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods. Mixed and Hybrid Finite Element Methods, Number 15 in Springer Series in Computational Mathematics (1991), Springer-Verlag: Springer-Verlag New York ·Zbl 0788.73002 |
[7] | Brezzi, F.; Lipnikov, K.; Shashkov, M.; Simoncini, V., A new discretization methodology for diffusion problems on generalized polyhedral meshes, Comput. Method Appl. M., 196, 37-40, 3682-3692 (2007) ·Zbl 1173.76370 |
[8] | Brezzi, F.; Lipnikov, K.; Simoncini, V., A family of mimetic finite difference methods on polygonal and polyhedral meshes, Math. Mod. Methods Appl. Syst., 15, 10, 1533-1551 (2005) ·Zbl 1083.65099 |
[9] | Chen, Z.; Hou, T. Y., A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Math. Comput., 72, 242, 541-576 (2003) ·Zbl 1017.65088 |
[10] | Chen, Z.; Huan, G.; Ma, Y., Computational Methods for Multiphase Flows in Porous Media. Computational Methods for Multiphase Flows in Porous Media, Computational Science and Engineering Series (2006), SIAM: SIAM Philadelphia, PA ·Zbl 1092.76001 |
[11] | Dendy, J. E., Black box multigrid, J. Comput. Phys., 48, 366-386 (1982) ·Zbl 0495.65047 |
[12] | Dendy, J. E., Two multigrid methods for three-dimensional problems with discontinuous and anisotropic coefficients, SIAM J. Sci. Stat. Comput., 8, 2, 673-685 (1987) ·Zbl 0659.65097 |
[13] | Deutsch, C. V.; Journel, A. G., GSLIB: Geostatical Software Library and User’s Guide (1998), Oxford University Press: Oxford University Press New York |
[14] | Efendiev, Y.; Ginting, V.; Hou, T.; Ewing, R., Accurate multiscale finite element methods for two-phase flow simulations, J. Comput. Phys., 220, 1, 155-174 (2006) ·Zbl 1158.76349 |
[15] | Forsyth, P. A., Numerical simulation of gas venting for NAPL site remediation, Soc. Pet. Eng. AIME Paper SPE, 18415, 85-96 (1989) |
[16] | Forsyth, P. A., A control volume finite element approach to NAPL groundwater contamination, SIAM J. Scient. Statist. Comput., 12, 5, 1029-1057 (1991) ·Zbl 0725.76087 |
[17] | V. Gvozdev, Discretization of the diffusion and Maxwell equations on polyhedral meshes, Technical Report Ph.D. Thesis, University of Houston, 2007.; V. Gvozdev, Discretization of the diffusion and Maxwell equations on polyhedral meshes, Technical Report Ph.D. Thesis, University of Houston, 2007. |
[18] | Hou, T. Y.; Wu, X. H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134, 169-189 (1997) ·Zbl 0880.73065 |
[19] | Jenny, P.; Lee, S. H.; Tchelepi, H. A., Adaptive multiscale finite-volume method for multiphase flow and transport in porous media, Multiscale Model. Simulat., 3, 1, 50-64 (2004), September 2004; 2004-2005. ·Zbl 1160.76372 |
[20] | Jikov, V. V.; Kozlov, S. M.; Oleinik, O. A., Homogenization of Differential Operators and Integral Functionals (1994), Springer-Verlag: Springer-Verlag Translated from Russian ·Zbl 0801.35001 |
[21] | V. Kippe, J.E. Aarnes, K.-A. Lie. A comparison of multiscale methods for elliptic problems in porous media flow. Computat. Geosci., Special Issue on Multiscale Methods, 2008, doi:10.1007/s10596-007-9074-6; V. Kippe, J.E. Aarnes, K.-A. Lie. A comparison of multiscale methods for elliptic problems in porous media flow. Computat. Geosci., Special Issue on Multiscale Methods, 2008, doi:10.1007/s10596-007-9074-6 ·Zbl 1259.76047 |
[22] | Kuznetsov, Yu., Mixed finite element methods on polyhedral meshes for diffusion equations, (Computational Modeling with PDEs in Science and Engineering (2008), Springer-Verlag: Springer-Verlag Berlin) ·Zbl 1149.65324 |
[23] | Kuznetsov, Yu. A., Mixed finite element method for diffusion equations on polygonal meshes with mixed cells, J. Numer. Math., 14, 4, 305-315 (2006) ·Zbl 1122.65112 |
[24] | MacLachlan, S. P.; Moulton, J. D., Multilevel upscaling through variational coarsening, Water Resour. Res., 42 (2006) |
[25] | Prakash, C., Examination of the upwind (donor-cell) formulation in control volume finite-element methods for fluid flow and heat transfer, Numer. Heat Transfer, 11, 4, 401-416 (1987) |
[26] | Ruge, J. W.; Stüben, K., Algebraic multigrid (AMG), (McCormick, S. F., Multigrid Methods. Multigrid Methods, Frontiers in Applied Mathematics, vol. 3 (1987), SIAM: SIAM Philadelphia, PA), 73-130 ·Zbl 0659.65094 |
[27] | Strouboulis, T.; Zhang, L.; Babuška, I., p-version of the generalized FEM using mesh-based handbooks with applications to multiscale problems, Int. J. Numer. Meth. Eng., 60, 10, 1639-1672 (2004) ·Zbl 1059.65106 |
[28] | Stüben, K., Algebraic multigrid (AMG): experiences and comparisons, Appl. Math. Comput., 13, 419-451 (1983) ·Zbl 0533.65064 |
[29] | Stüben, K., A review of algebraic multigrid, J. Comput. Appl. Math., 128, 1-2, 281-309 (2001) ·Zbl 0979.65111 |
[30] | Vanek, P.; Mandel, J.; Brezina, M., Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Computing, 56, 3, 179-196 (1996) ·Zbl 0851.65087 |
[31] | Yang, Shi-tien; Henry, A. F., A finite element synthesis method, Nucl. Sci. Eng., 59, 1, 63-67 (1976) |