Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Projections of self-similar and related fractals: a survey of recent developments.(English)Zbl 1338.28004

Bandt, Christoph (ed.) et al., Fractal geometry and stochastics V. Selected papers of the 5th conference, Tabarz, Germany, March 24–29, 2014. Cham: Springer (ISBN 978-3-319-18659-7/hbk; 978-3-319-18660-3/ebook). Progress in Probability 70, 53-74 (2015).
Summary: In recent years there has been much interest – and progress – in understanding projections of many concrete fractals sets and measures. The general goal is to be able to go beyond general results such as Marstrand’s Theorem, and quantify the size ofevery projection – or at least every projection outside some very small set. This article surveys some of these results and the techniques that were developed to obtain them, focusing on linear projections of planar self-similar sets and measures.
For the entire collection see [Zbl 1321.28002].

MSC:

28A78 Hausdorff and packing measures
28A80 Fractals
37A99 Ergodic theory

Cite

References:

[1]J. Almarza, Projections of (×m, ×n)-invariant Gibbs measures preserve dimension (2014, preprint). Available at http://arxiv.org/abs/1410.5086v1
[2]C.G.T. de A. Moreira, Sums of regular Cantor sets, dynamics and applications to number theory. Period. Math. Hungar. 37(1-3), 55-63 (1998). International Conference on Dimension and Dynamics (Miskolc, 1998) ·Zbl 0980.54025
[3]Erdős, P., On a family of symmetric Bernoulli convolutions, Am. J. Math., 61, 974-976 (1939) ·JFM 65.1308.01 ·doi:10.2307/2371641
[4]Erdős, P., On the smoothness properties of a family of Bernoulli convolutions, Am. J. Math., 62, 180-186 (1940) ·JFM 66.0511.02 ·doi:10.2307/2371446
[5]Eroğlu, K. I., On planar self-similar sets with a dense set of rotations, Ann. Acad. Sci. Fenn. Math., 32, 2, 409-424 (2007) ·Zbl 1133.28004
[6]K.J. Falconer, Fractal Geometry. Mathematical Foundations and Applications, 3rd edn. (Wiley, Chichester, 2014) ·Zbl 1285.28011
[7]K.J. Falconer, J. Fraser, X. Jin, Sixty years of fractal projections (2014, preprint). Available at http://arxiv.org/abs/1411.3156v1 ·Zbl 1338.28007
[8]K.J. Falconer, X. Jin, Dimension conservation for self-similar sets and fractal percolation. Int. Math. Res. Notices (2014, accepted for publication). Available at http://arxiv.org/abs/1409.1882v2 ·Zbl 1351.28012
[9]K.J. Falconer, X. Jin, Exact dimensionality and projections of random self-similar measures and sets. J. Lond. Math. Soc. (2) 90(2), 388-412 (2014) ·Zbl 1305.28010
[10]Fan, A.-H.; Lau, K.-S.; Rao, H., Relationships between different dimensions of a measure, Monatsh. Math., 135, 3, 191-201 (2002) ·Zbl 0996.28001 ·doi:10.1007/s006050200016
[11]Á. Farkas, Projections of self-similar sets with no separation condition. Isr. J. Math. (2014, to appear). Available at http://arxiv.org/abs/1307.2841v3 ·Zbl 1353.28004
[12]Feng, D.-J.; Hu, H., Dimension theory of iterated function systems, Commun. Pure Appl. Math., 62, 11, 1435-1500 (2009) ·Zbl 1230.37031 ·doi:10.1002/cpa.20276
[13]A. Ferguson, J. Fraser, T. Sahlsten, Scaling scenery of (×m, ×n)-invariant measures. Adv. Math. 268, 564-602 (2015) ·Zbl 1302.28029
[14]Ferguson, A.; Jordan, T.; Shmerkin, P., The Hausdorff dimension of the projections of self-affine carpets, Fund. Math., 209, 3, 193-213 (2010) ·Zbl 1206.28011 ·doi:10.4064/fm209-3-1
[15]J. Fraser, P. Shmerkin, On the dimensions of a family of overlapping self-affine carpets. Ergod. Theory Dyn. Syst. (2014, accepted for publication). Available at http://arxiv.org/abs/1405.4919v2 ·Zbl 1441.37031
[16]Furman, A., On the multiplicative ergodic theorem for uniquely ergodic systems, Ann. Inst. H. Poincaré Probab. Stat., 33, 6, 797-815 (1997) ·Zbl 0892.60011 ·doi:10.1016/S0246-0203(97)80113-6
[17]D. Galicer, S. Saglietti, P. Shmerkin, A. Yavicoli, L^q dimensions and projections of random measures. (preprint). Available at http://arxiv.org/abs/1504.04893 ·Zbl 1347.28008
[18]M. Hochman, On self-similar sets with overlaps and inverse theorems for entropy. Ann. Math. (2) 180(2), 773-822 (2014) ·Zbl 1337.28015
[19]M. Hochman, Self-similar sets, entropy and additive combinatorics, in Geometry and Analysis of Fractals, ed. by D.-J. Feng, K.-S. Lau. Springer Proceedings in Mathematics & Statistics, vol. 88 (Springer, Heidelberg, 2014), pp. 252-252 ·Zbl 1318.28025
[20]M. Hochman, P. Shmerkin, Local entropy averages and projections of fractal measures. Ann. Math. (2) 175(3), 1001-1059 (2012) ·Zbl 1251.28008
[21]Hu, X.; James Taylor, S., Fractal properties of products and projections of measures in R^d, Math. Proc. Camb. Philos. Soc., 115, 3, 527-544 (1994) ·Zbl 0810.28005 ·doi:10.1017/S0305004100072285
[22]Hunt, B. R.; Kaloshin, V. Y., How projections affect the dimension spectrum of fractal measures, Nonlinearity, 10, 5, 1031-1046 (1997) ·Zbl 0903.28008 ·doi:10.1088/0951-7715/10/5/002
[23]Kenyon, R., Projecting the one-dimensional Sierpinski gasket, Isr. J. Math., 97, 221-238 (1997) ·Zbl 0871.28006 ·doi:10.1007/BF02774038
[24]J.M. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. Lond. Math. Soc. (3) 4, 257-302 (1954) ·Zbl 0056.05504
[25]P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Volume 44 of Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 1995). Fractals and rectifiability ·Zbl 0819.28004
[26]Nazarov, F.; Peres, Y.; Shmerkin, P., Convolutions of Cantor measures without resonance, Isr. J. Math., 187, 93-116 (2012) ·Zbl 0810.28005 ·doi:10.1007/s11856-011-0164-8
[27]Orponen, T., On the distance sets of self-similar sets, Nonlinearity, 25, 6, 1919-1929 (2012) ·Zbl 1244.28014 ·doi:10.1088/0951-7715/25/6/1919
[28]Orponen, T., On the packing measure of self-similar sets, Nonlinearity, 26, 11, 2929-2934 (2013) ·Zbl 1277.28013 ·doi:10.1088/0951-7715/26/11/2929
[29]Peres, Y.; Shmerkin, P., Resonance between Cantor sets, Ergod. Theory Dyn. Syst., 29, 1, 201-221 (2009) ·Zbl 1159.37005 ·doi:10.1017/S0143385708000369
[30]Peres, Y.; Solomyak, B., Existence of L^q dimensions and entropy dimension for self-conformal measures, Indiana Univ. Math. J., 49, 4, 1603-1621 (2000) ·Zbl 0978.28004 ·doi:10.1512/iumj.2000.49.1851
[31]M. Rams, K. Simon, The geometry of fractal percolation, in Geometry and Analysis of Fractals, ed. by D.-J. Feng, K.-S. Lau. Springer Proceedings in Mathematics & Statistics, vol. 88 (Springer, Heidelberg, 2014), pp. 303-323 ·Zbl 1318.28030
[32]Shmerkin, P., On the exceptional set for absolute continuity of Bernoulli convolutions, Geom. Funct. Anal., 24, 3, 946-958 (2014) ·Zbl 1305.28012 ·doi:10.1007/s00039-014-0285-4
[33]P. Shmerkin, B. Solomyak, Absolute continuity of self-similar measures, their projections and convolutions. Trans. Am. Math. Soc. (2014, accepted for publication). Available at http://arxiv.org/abs/1406.0204v1 ·Zbl 1334.28013
[34]P. Shmerkin, V. Suomala, Spatially independent martingales, intersections, and applications (2014, preprint). Available at http://arxiv.org/abs/1409.6707v3 ·Zbl 1435.60005
[35]B. Solomyak, On the random series \(\sum \pm \lambda^n\) (an Erdős problem). Ann. Math. (2) 142(3), 611-625 (1995) ·Zbl 0837.28007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp