[1] | J. Almarza, Projections of (×m, ×n)-invariant Gibbs measures preserve dimension (2014, preprint). Available at http://arxiv.org/abs/1410.5086v1 |
[2] | C.G.T. de A. Moreira, Sums of regular Cantor sets, dynamics and applications to number theory. Period. Math. Hungar. 37(1-3), 55-63 (1998). International Conference on Dimension and Dynamics (Miskolc, 1998) ·Zbl 0980.54025 |
[3] | Erdős, P., On a family of symmetric Bernoulli convolutions, Am. J. Math., 61, 974-976 (1939) ·JFM 65.1308.01 ·doi:10.2307/2371641 |
[4] | Erdős, P., On the smoothness properties of a family of Bernoulli convolutions, Am. J. Math., 62, 180-186 (1940) ·JFM 66.0511.02 ·doi:10.2307/2371446 |
[5] | Eroğlu, K. I., On planar self-similar sets with a dense set of rotations, Ann. Acad. Sci. Fenn. Math., 32, 2, 409-424 (2007) ·Zbl 1133.28004 |
[6] | K.J. Falconer, Fractal Geometry. Mathematical Foundations and Applications, 3rd edn. (Wiley, Chichester, 2014) ·Zbl 1285.28011 |
[7] | K.J. Falconer, J. Fraser, X. Jin, Sixty years of fractal projections (2014, preprint). Available at http://arxiv.org/abs/1411.3156v1 ·Zbl 1338.28007 |
[8] | K.J. Falconer, X. Jin, Dimension conservation for self-similar sets and fractal percolation. Int. Math. Res. Notices (2014, accepted for publication). Available at http://arxiv.org/abs/1409.1882v2 ·Zbl 1351.28012 |
[9] | K.J. Falconer, X. Jin, Exact dimensionality and projections of random self-similar measures and sets. J. Lond. Math. Soc. (2) 90(2), 388-412 (2014) ·Zbl 1305.28010 |
[10] | Fan, A.-H.; Lau, K.-S.; Rao, H., Relationships between different dimensions of a measure, Monatsh. Math., 135, 3, 191-201 (2002) ·Zbl 0996.28001 ·doi:10.1007/s006050200016 |
[11] | Á. Farkas, Projections of self-similar sets with no separation condition. Isr. J. Math. (2014, to appear). Available at http://arxiv.org/abs/1307.2841v3 ·Zbl 1353.28004 |
[12] | Feng, D.-J.; Hu, H., Dimension theory of iterated function systems, Commun. Pure Appl. Math., 62, 11, 1435-1500 (2009) ·Zbl 1230.37031 ·doi:10.1002/cpa.20276 |
[13] | A. Ferguson, J. Fraser, T. Sahlsten, Scaling scenery of (×m, ×n)-invariant measures. Adv. Math. 268, 564-602 (2015) ·Zbl 1302.28029 |
[14] | Ferguson, A.; Jordan, T.; Shmerkin, P., The Hausdorff dimension of the projections of self-affine carpets, Fund. Math., 209, 3, 193-213 (2010) ·Zbl 1206.28011 ·doi:10.4064/fm209-3-1 |
[15] | J. Fraser, P. Shmerkin, On the dimensions of a family of overlapping self-affine carpets. Ergod. Theory Dyn. Syst. (2014, accepted for publication). Available at http://arxiv.org/abs/1405.4919v2 ·Zbl 1441.37031 |
[16] | Furman, A., On the multiplicative ergodic theorem for uniquely ergodic systems, Ann. Inst. H. Poincaré Probab. Stat., 33, 6, 797-815 (1997) ·Zbl 0892.60011 ·doi:10.1016/S0246-0203(97)80113-6 |
[17] | D. Galicer, S. Saglietti, P. Shmerkin, A. Yavicoli, L^q dimensions and projections of random measures. (preprint). Available at http://arxiv.org/abs/1504.04893 ·Zbl 1347.28008 |
[18] | M. Hochman, On self-similar sets with overlaps and inverse theorems for entropy. Ann. Math. (2) 180(2), 773-822 (2014) ·Zbl 1337.28015 |
[19] | M. Hochman, Self-similar sets, entropy and additive combinatorics, in Geometry and Analysis of Fractals, ed. by D.-J. Feng, K.-S. Lau. Springer Proceedings in Mathematics & Statistics, vol. 88 (Springer, Heidelberg, 2014), pp. 252-252 ·Zbl 1318.28025 |
[20] | M. Hochman, P. Shmerkin, Local entropy averages and projections of fractal measures. Ann. Math. (2) 175(3), 1001-1059 (2012) ·Zbl 1251.28008 |
[21] | Hu, X.; James Taylor, S., Fractal properties of products and projections of measures in R^d, Math. Proc. Camb. Philos. Soc., 115, 3, 527-544 (1994) ·Zbl 0810.28005 ·doi:10.1017/S0305004100072285 |
[22] | Hunt, B. R.; Kaloshin, V. Y., How projections affect the dimension spectrum of fractal measures, Nonlinearity, 10, 5, 1031-1046 (1997) ·Zbl 0903.28008 ·doi:10.1088/0951-7715/10/5/002 |
[23] | Kenyon, R., Projecting the one-dimensional Sierpinski gasket, Isr. J. Math., 97, 221-238 (1997) ·Zbl 0871.28006 ·doi:10.1007/BF02774038 |
[24] | J.M. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. Lond. Math. Soc. (3) 4, 257-302 (1954) ·Zbl 0056.05504 |
[25] | P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Volume 44 of Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 1995). Fractals and rectifiability ·Zbl 0819.28004 |
[26] | Nazarov, F.; Peres, Y.; Shmerkin, P., Convolutions of Cantor measures without resonance, Isr. J. Math., 187, 93-116 (2012) ·Zbl 0810.28005 ·doi:10.1007/s11856-011-0164-8 |
[27] | Orponen, T., On the distance sets of self-similar sets, Nonlinearity, 25, 6, 1919-1929 (2012) ·Zbl 1244.28014 ·doi:10.1088/0951-7715/25/6/1919 |
[28] | Orponen, T., On the packing measure of self-similar sets, Nonlinearity, 26, 11, 2929-2934 (2013) ·Zbl 1277.28013 ·doi:10.1088/0951-7715/26/11/2929 |
[29] | Peres, Y.; Shmerkin, P., Resonance between Cantor sets, Ergod. Theory Dyn. Syst., 29, 1, 201-221 (2009) ·Zbl 1159.37005 ·doi:10.1017/S0143385708000369 |
[30] | Peres, Y.; Solomyak, B., Existence of L^q dimensions and entropy dimension for self-conformal measures, Indiana Univ. Math. J., 49, 4, 1603-1621 (2000) ·Zbl 0978.28004 ·doi:10.1512/iumj.2000.49.1851 |
[31] | M. Rams, K. Simon, The geometry of fractal percolation, in Geometry and Analysis of Fractals, ed. by D.-J. Feng, K.-S. Lau. Springer Proceedings in Mathematics & Statistics, vol. 88 (Springer, Heidelberg, 2014), pp. 303-323 ·Zbl 1318.28030 |
[32] | Shmerkin, P., On the exceptional set for absolute continuity of Bernoulli convolutions, Geom. Funct. Anal., 24, 3, 946-958 (2014) ·Zbl 1305.28012 ·doi:10.1007/s00039-014-0285-4 |
[33] | P. Shmerkin, B. Solomyak, Absolute continuity of self-similar measures, their projections and convolutions. Trans. Am. Math. Soc. (2014, accepted for publication). Available at http://arxiv.org/abs/1406.0204v1 ·Zbl 1334.28013 |
[34] | P. Shmerkin, V. Suomala, Spatially independent martingales, intersections, and applications (2014, preprint). Available at http://arxiv.org/abs/1409.6707v3 ·Zbl 1435.60005 |
[35] | B. Solomyak, On the random series \(\sum \pm \lambda^n\) (an Erdős problem). Ann. Math. (2) 142(3), 611-625 (1995) ·Zbl 0837.28007 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.