81R50 | Quantum groups and related algebraic methods applied to problems in quantum theory |
16T25 | Yang-Baxter equations |
17B37 | Quantum groups (quantized enveloping algebras) and related deformations |
[1] | T. Akasaka and M. Kashiwara, Finite-dimensional representations of quantum affine alge- bras, Publ. RIMS Kyoto Univ. 33 (1997), 839-867. ·Zbl 0915.17011 ·doi:10.2977/prims/1195145020 |
[2] | V. Chari, Braid group actions and tensor products, Int. Math. Res. Notices 2002, 357-382. ·Zbl 0990.17009 ·doi:10.1155/S107379280210612X |
[3] | V. Chari and D. Hernandez, Beyond Kirillov-Reshetikhin modules, in Quantum affine al- gebras, extended affine Lie algebras, and their applications, Contemp. Math. 506, Amer. Math. Soc., Providence, 2010, 49-81. ·Zbl 1277.17009 |
[4] | V. Chari and A. Pressley, A guide to quantum groups, Cambridge Univ. Press, Cambridge, 1994. ·Zbl 0839.17010 |
[5] | , Yangians, integrable quantum systems and Dorey’s rule, Comm. Math. Phys. 181 (1996), 265-302. ·Zbl 0869.17015 ·doi:10.1007/BF02101006 |
[6] | E. Date and M. Okado, Calculation of excitation spectra of the spin model related with the (1) vector representation of the quantized affine algebra of type An , Int. J. Modern Phys. A 9 (1994), 399-417. ·Zbl 0986.82500 ·doi:10.1142/S0217751X94000194 |
[7] | B. Davies and M. Okado, Excitation spectra of spin models constructed from quantized affine (1) (1) algebras of type Bn , Dn , Int. J. Modern Phys. A 11 (1996), 1975-2017. ·Zbl 1044.82533 ·doi:10.1142/S0217751X96001012 |
[8] | V. G. Drinfeld, Quantum groups, in Proc. ICM-86 (Berkeley), Vol. 1, Amer. Math. Soc., 1986, 798-820. ·Zbl 0667.16003 |
[9] | E. Frenkel and E. Mukhin, Combinatorics of q-characters of finite-dimensional representa- tions of quantum affine algebras, Comm. Math. Phys. 216 (2001), 23-57. ·Zbl 1051.17013 ·doi:10.1007/s002200000323 |
[10] | E. Frenkel and N. Reshetikhin, The q-characters of representations of quantum affine alge- bras and deformations of W-algebras, in Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), Contemp. Math. 248, Amer. Math. Soc., Providence, RI, 1999, 163-205. ·Zbl 0973.17015 |
[11] | I. B. Frenkel and N. Yu. Reshetikhin, Quantum affine algebras and holonomic difference equations, Comm. Math. Phys. 146 (1992), 1-60. ·Zbl 0760.17006 ·doi:10.1007/BF02099206 |
[12] | V. Ginzburg and É. Vasserot, Langlands reciprocity for affine quantum groups of type An, Int. Math. Res. Notices 1993, 67-85. ·Zbl 0785.17014 ·doi:10.1155/S1073792893000078 |
[13] | J. Hong and S.-J. Kang, Introduction to quantum groups and crystal bases, Grad. Stud. Math. 42, Amer. Math. Soc., Providence, RI, 2002. ·Zbl 1134.17007 |
[14] | B.-Y. Hou, W.-L. Yang and Y.-Z. Zhang, The twisted quantum affine algebra Uq(A ) and 2 correlation functions of the Izergin-Korepin model, Nuclear Phys. B556 (1999), 485-504. ·Zbl 1068.81562 ·doi:10.1016/S0550-3213(99)00348-X |
[15] | M. Jimbo, Quantum R matrix for the generalized Toda system, Comm. Math. Phys. 102 (1986), 537-547. ·Zbl 0604.58013 ·doi:10.1007/BF01221646 |
[16] | N. Jing, K. C. Misra and M. Okado, q-wedge modules for quantized enveloping algebras of classical type, J. Algebra 230 (2000), 518-539. ·Zbl 1024.17012 ·doi:10.1006/jabr.2000.8325 |
[17] | V. Kac, Infinite dimensional Lie algebras, 3rd ed., Cambridge Univ. Press, Cambridge, 1990. ·Zbl 0716.17022 |
[18] | S.-J. Kang, M. Kashiwara and M. Kim, Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, ·Zbl 1323.81046 ·doi:10.1215/00127094-3119632 |
[19] | , Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras II, Duke Math. J. 164 (2015), 1549-1602. ·Zbl 1323.81046 ·doi:10.1215/00127094-3119632 |
[20] | S.-J. Kang, M. Kashiwara, M. Kim and S.-j. Oh, Simplicity of heads and socles of tensor products, Compos. Math. 151 (2015), 377-396. ·Zbl 1366.17014 |
[21] | , Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras III, Proc. London Math. Soc. (3) 111 (2015), 420-444. ·Zbl 1322.81056 ·doi:10.1112/plms/pdv032 |
[22] | , Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras IV, ·Zbl 1354.81030 |
[23] | S.-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima and A. Nakayashiki, Perfect crystals of quantum affine Lie algebras, Duke Math. J. 68 (1992), 499-607. ·Zbl 0774.17017 ·doi:10.1215/S0012-7094-92-06821-9 |
[24] | M. Kashiwara, On level zero representations of quantum affine algebras, Duke Math. J. 112 (2002), 117-175. ·Zbl 1033.17017 ·doi:10.1215/S0012-9074-02-11214-9 |
[25] | M. Khovanov and A. D. Lauda, A diagrammatic approach to categorification of quantum groups I, Represent. Theory 13 (2009), 309-347. ·Zbl 1188.81117 ·doi:10.1090/S1088-4165-09-00346-X |
[26] | , A diagrammatic approach to categorification of quantum groups II, Trans. Amer. Math. Soc. 363 (2011), 2685-2700. ·Zbl 1214.81113 ·doi:10.1090/S0002-9947-2010-05210-9 |
[27] | H. Nakajima, Quiver varieties and finite-dimensional representations of quantum affine al- gebras, J. Amer. Math. Soc. 14 (2001), 145-238. ·Zbl 0981.17016 ·doi:10.1090/S0894-0347-00-00353-2 |
[28] | M. Okado, Quantum R matrices related to the spin representations of Bn and Dn, Comm. Math. Phys. 134 (1990), 467-486. ·Zbl 0722.17008 ·doi:10.1007/BF02098442 |
[29] | M. Okado and A. Schilling, Existence of Kirillov-Reshetikhin crystals for nonexceptional types, Represent. Theory 12 (2008), 186-207. ·Zbl 1243.17009 ·doi:10.1090/S1088-4165-08-00340-3 |
[30] | R. Rouquier, 2 Kac-Moody algebras, |