Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The denominators of normalized \(R\)-matrices of types \(A_{2n-1}^{(2)}\), \(A_{2n}^{(2)}\), \(B_{n}^{(1)}\) and \(D_{n+1}^{(2)}\).(English)Zbl 1337.81080

The denominators of normalized \(R\)-matrices play an important role in studying finite-dimensional integrable representations and have been investigated by a number of authors. In this paper under review, by following the ideas from [T. Akasaka andM. Kashiwara, Publ. Res. Inst. Math. Sci. 33, No. 5, 839–867 (1997;Zbl 0915.17011)] and [S.-J. Kang et al., Duke Math. J. 164, No. 8, 1549–1602 (2015;Zbl 1323.81046)], the author provides a general framework for calculating the denominators of all normalized \(R\)-matrices of types \(A^{(2)}_{2n-1}(n\geq 3)\), \(A^{(2)}_{2n}(n\geq 2)\), \(B^{(1)}_{n}(n\geq 3)\) and \(D^{(2)}_{n+1}(n\geq 2)\). Then the denominator formulas are explicitly given. It is concluded that the normalized \(R\)-matrices of types \(A^{(2)}_{2n-1}(n\geq 3)\), \(A^{(2)}_{2n}(n\geq 2)\), \(B^{(1)}_{n}(n\geq 3)\) and \(D^{(2)}_{3}\) have only simple poles, and under some additional conditions, those of types \(D^{(2)}_{n+1}(n\geq 3)\) have double poles.

MSC:

81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
16T25 Yang-Baxter equations
17B37 Quantum groups (quantized enveloping algebras) and related deformations

Cite

References:

[1]T. Akasaka and M. Kashiwara, Finite-dimensional representations of quantum affine alge- bras, Publ. RIMS Kyoto Univ. 33 (1997), 839-867. ·Zbl 0915.17011 ·doi:10.2977/prims/1195145020
[2]V. Chari, Braid group actions and tensor products, Int. Math. Res. Notices 2002, 357-382. ·Zbl 0990.17009 ·doi:10.1155/S107379280210612X
[3]V. Chari and D. Hernandez, Beyond Kirillov-Reshetikhin modules, in Quantum affine al- gebras, extended affine Lie algebras, and their applications, Contemp. Math. 506, Amer. Math. Soc., Providence, 2010, 49-81. ·Zbl 1277.17009
[4]V. Chari and A. Pressley, A guide to quantum groups, Cambridge Univ. Press, Cambridge, 1994. ·Zbl 0839.17010
[5], Yangians, integrable quantum systems and Dorey’s rule, Comm. Math. Phys. 181 (1996), 265-302. ·Zbl 0869.17015 ·doi:10.1007/BF02101006
[6]E. Date and M. Okado, Calculation of excitation spectra of the spin model related with the (1) vector representation of the quantized affine algebra of type An , Int. J. Modern Phys. A 9 (1994), 399-417. ·Zbl 0986.82500 ·doi:10.1142/S0217751X94000194
[7]B. Davies and M. Okado, Excitation spectra of spin models constructed from quantized affine (1) (1) algebras of type Bn , Dn , Int. J. Modern Phys. A 11 (1996), 1975-2017. ·Zbl 1044.82533 ·doi:10.1142/S0217751X96001012
[8]V. G. Drinfeld, Quantum groups, in Proc. ICM-86 (Berkeley), Vol. 1, Amer. Math. Soc., 1986, 798-820. ·Zbl 0667.16003
[9]E. Frenkel and E. Mukhin, Combinatorics of q-characters of finite-dimensional representa- tions of quantum affine algebras, Comm. Math. Phys. 216 (2001), 23-57. ·Zbl 1051.17013 ·doi:10.1007/s002200000323
[10]E. Frenkel and N. Reshetikhin, The q-characters of representations of quantum affine alge- bras and deformations of W-algebras, in Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), Contemp. Math. 248, Amer. Math. Soc., Providence, RI, 1999, 163-205. ·Zbl 0973.17015
[11]I. B. Frenkel and N. Yu. Reshetikhin, Quantum affine algebras and holonomic difference equations, Comm. Math. Phys. 146 (1992), 1-60. ·Zbl 0760.17006 ·doi:10.1007/BF02099206
[12]V. Ginzburg and É. Vasserot, Langlands reciprocity for affine quantum groups of type An, Int. Math. Res. Notices 1993, 67-85. ·Zbl 0785.17014 ·doi:10.1155/S1073792893000078
[13]J. Hong and S.-J. Kang, Introduction to quantum groups and crystal bases, Grad. Stud. Math. 42, Amer. Math. Soc., Providence, RI, 2002. ·Zbl 1134.17007
[14]B.-Y. Hou, W.-L. Yang and Y.-Z. Zhang, The twisted quantum affine algebra Uq(A ) and 2 correlation functions of the Izergin-Korepin model, Nuclear Phys. B556 (1999), 485-504. ·Zbl 1068.81562 ·doi:10.1016/S0550-3213(99)00348-X
[15]M. Jimbo, Quantum R matrix for the generalized Toda system, Comm. Math. Phys. 102 (1986), 537-547. ·Zbl 0604.58013 ·doi:10.1007/BF01221646
[16]N. Jing, K. C. Misra and M. Okado, q-wedge modules for quantized enveloping algebras of classical type, J. Algebra 230 (2000), 518-539. ·Zbl 1024.17012 ·doi:10.1006/jabr.2000.8325
[17]V. Kac, Infinite dimensional Lie algebras, 3rd ed., Cambridge Univ. Press, Cambridge, 1990. ·Zbl 0716.17022
[18]S.-J. Kang, M. Kashiwara and M. Kim, Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, ·Zbl 1323.81046 ·doi:10.1215/00127094-3119632
[19], Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras II, Duke Math. J. 164 (2015), 1549-1602. ·Zbl 1323.81046 ·doi:10.1215/00127094-3119632
[20]S.-J. Kang, M. Kashiwara, M. Kim and S.-j. Oh, Simplicity of heads and socles of tensor products, Compos. Math. 151 (2015), 377-396. ·Zbl 1366.17014
[21], Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras III, Proc. London Math. Soc. (3) 111 (2015), 420-444. ·Zbl 1322.81056 ·doi:10.1112/plms/pdv032
[22], Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras IV, ·Zbl 1354.81030
[23]S.-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima and A. Nakayashiki, Perfect crystals of quantum affine Lie algebras, Duke Math. J. 68 (1992), 499-607. ·Zbl 0774.17017 ·doi:10.1215/S0012-7094-92-06821-9
[24]M. Kashiwara, On level zero representations of quantum affine algebras, Duke Math. J. 112 (2002), 117-175. ·Zbl 1033.17017 ·doi:10.1215/S0012-9074-02-11214-9
[25]M. Khovanov and A. D. Lauda, A diagrammatic approach to categorification of quantum groups I, Represent. Theory 13 (2009), 309-347. ·Zbl 1188.81117 ·doi:10.1090/S1088-4165-09-00346-X
[26], A diagrammatic approach to categorification of quantum groups II, Trans. Amer. Math. Soc. 363 (2011), 2685-2700. ·Zbl 1214.81113 ·doi:10.1090/S0002-9947-2010-05210-9
[27]H. Nakajima, Quiver varieties and finite-dimensional representations of quantum affine al- gebras, J. Amer. Math. Soc. 14 (2001), 145-238. ·Zbl 0981.17016 ·doi:10.1090/S0894-0347-00-00353-2
[28]M. Okado, Quantum R matrices related to the spin representations of Bn and Dn, Comm. Math. Phys. 134 (1990), 467-486. ·Zbl 0722.17008 ·doi:10.1007/BF02098442
[29]M. Okado and A. Schilling, Existence of Kirillov-Reshetikhin crystals for nonexceptional types, Represent. Theory 12 (2008), 186-207. ·Zbl 1243.17009 ·doi:10.1090/S1088-4165-08-00340-3
[30]R. Rouquier, 2 Kac-Moody algebras,
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp