Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e.g.functions,functorial, etc.). Otherwise the search isexact.
"Topological group"Phrases (multi-words) should be set in"straight quotation marks".
au: Bourbaki & ti: AlgebraSearch forauthor andtitle. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator | allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so: Eur* J* Mat* Soc* cc: 14Search for publications in a particularsource with aMathematics SubjectClassificationcode (cc) in14.
"Partial diff* eq*" ! ellipticThenot-operator! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set to books; alternatively:j forjournal articles,a forbook articles.
py: 2000-2015 cc: (94A | 11T)Numberranges are accepted. Terms can be grouped within(parentheses).
la: chineseFind documents in a givenlanguage.ISO 639-1 language codes can also be used.

Fields

anyanywhere
aninternal document identifier
auauthor, editor
aiinternal author identifier
tititle
lalanguage
sosource
abreview, abstract
pypublication year
rvreviewer
ccMSC code
utuncontrolled term
dtdocument type (j: journal article;b: book;a: book article)

Operators

a& blogic and
a| blogic or
!ablogic not
abc*right wildcard
"ab c"phrase
(ab c)parentheses

See also ourGeneral Help.

On the second-order shape derivative of the Kohn-Vogelius objective functional using the velocity method.(English)Zbl 1337.49073

Summary: The exterior Bernoulli free boundary problem is studied via the shape optimization technique. The problem is reformulated into the minimization of the so-called Kohn-Vogelius objective functional, where the involved two state variables separately satisfy two boundary value problems. The paper focuses on solving the second-order shape derivative of the objective functional using the velocity method with nonautonomous velocity fields. This work confirms the classical results of Delfour and Zolésio in relating shape derivatives of functionals using the velocity method and the perturbation of identity technique.

MSC:

49Q10 Optimization of shapes other than minimal surfaces
35R35 Free boundary problems for PDEs

Cite

References:

[1]Choi, K. K.; Kim, N.-H., Structural Sensitivity Analysis and Optimization 1: Linear Systems. Structural Sensitivity Analysis and Optimization 1: Linear Systems, Mechanical Engineering Series (2005), New York, NY, USA: Springer, New York, NY, USA ·doi:10.1007/b138709
[2]Choi, K.; Kim, N., Structural Sensitivity Analysis and Optimization: Nonlinear Systems and Applications. Structural Sensitivity Analysis and Optimization: Nonlinear Systems and Applications, Mechanical Engineering Series (2005), Springer
[3]Mohammadi, B.; Pironneau, O., Applied Shape Optimization for Fluids (2001), Oxford, UK: Clardendon Press, Oxford, UK ·Zbl 0970.76003
[4]Haslinger, J.; Mäkinen, R. A. E., Introduction to shape optimization: theory, approximation, and computation, Advances in Design and Control (2003), Society for Industrial and Applied Mathematics ·Zbl 1020.74001 ·doi:10.1137/1.9780898718690
[5]Delfour, M. C.; Zolésio, J.-P., Shapes and Geometries (2001), Philadelphia, Pa, USA: SIAM, Philadelphia, Pa, USA ·Zbl 1002.49029
[6]Sokolowski, J.; Zolésio, J.-P., Introduction to Shape Optimization: Shape Sensitivity Analysis. Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer Series in Computational Mathematics, 16 (1992), Springer ·Zbl 0761.73003 ·doi:10.1007/978-3-642-58106-9
[7]Abda, B.; Bouchon, F.; Peichl, G.; Sayeh, M.; Touzani, R., A new formulation for the Bernoulli problem, Proceedings of the 5th International Conference on Inverse Problems, Control and Shape Optimization
[8]Kasumba, H.; Kunisch, K., On computation of the shape Hessian of the cost functional without shape sensitivity of the state variable, SFB-Report, 2012-012 (2012) ·Zbl 1301.49117
[9]Bacani, J. B.; Peichl, G. H., On the first-order shape derivative of the Kohn-Vogelius cost functional of the Bernoulli problem, Abstract and Applied Analysis, 2013 (2013) ·Zbl 1290.49083 ·doi:10.1155/2013/384320
[10]Bouchon, F.; Clain, S.; Touzani, R., Numerical solution of the free boundary Bernoulli problem using a level set formulation, Computer Methods in Applied Mechanics and Engineering, 194, 36-38, 3934-3948 (2005) ·Zbl 1090.76048 ·doi:10.1016/j.cma.2004.09.008
[11]Flucher, M.; Rumpf, M., Bernoulli’s free-boundary problem, qualitative theory and numerical approximation, Journal für die Reine und Angewandte Mathematik, 486, 165-204 (2003) ·Zbl 0909.35154
[12]Haslinger, J.; Kozubek, T.; Kunisch, K.; Peichl, G., Shape optimization and fictitious domain approach for solving free boundary problems of Bernoulli type, Computational Optimization and Applications, 26, 3, 231-251 (2003) ·Zbl 1077.49030 ·doi:10.1023/a:1026095405906
[13]Ito, K.; Kunisch, K.; Peichl, G. H., Variational approach to shape derivative for a class of Bernoulli problem, Journal of Mathematical Analysis and Applications, 314, 1, 126-149 (2006) ·Zbl 1088.49028 ·doi:10.1016/j.jmaa.2005.03.100
[14]Eppler, K.; Harbrecht, H., Shape optimization for free boundary problems—analysis and numerics, Constrained Optimization and Optimal Control for Partial Differential Equations. Constrained Optimization and Optimal Control for Partial Differential Equations, International Series of Numerical Mathematics, 160, 277-288 (2012), Basel, Switzerland: Springer, Basel, Switzerland ·Zbl 1356.49073 ·doi:10.1007/978-3-0348-0133-1_15
[15]Eppler, K.; Harbrecht, H., Tracking Neumann data for stationary free boundary problems, SIAM Journal on Control and Optimization, 48, 5, 2901-2916 (2009) ·Zbl 1202.49052 ·doi:10.1137/080733760
[16]Murat, F.; Simon, J., Etude de problemes d’optimal design, Optimization Techniques Modeling and Optimization in the Service of Man Part 2. Optimization Techniques Modeling and Optimization in the Service of Man Part 2, Lecture Notes in Computer Science, 41, 54-62 (1976), Berlin, Germany: Springer, Berlin, Germany ·Zbl 0334.49013 ·doi:10.1007/3-540-07623-9_279
[17]Murat, F.; Simon, J., Sur le contrôle par un domaine géométrique, Report of L.A., 189 76015 (1976), Université Paris VI
[18]Fujii, N., Domain optimization problems with a boundary value problem as a constraint, Control of Distributed Parameter Systems 1986, 5-9 (1986), Oxford, UK: Pergamon Press, Oxford, UK
[19]Simon, J., Second variations for domain optimization problems, Control of Distributed Parameter Systems (1988), Birkhäuser
[20]Delfour, M. C.; Zolésio, J.-P., Computation of the shape Hessian by a Lagrangian method, Control of Distributed Parameter Systems, 215-220 (1989), Perpignan, France: IFAC, Perpignan, France
[21]Delfour, M. C.; Zolésio, J.-P., Shape Hessian by the velocity method: a Lagrangian approach, Stabilization of Flexible Structures. Stabilization of Flexible Structures, Lecture Notes in Control and Information Sciences, 147, 255-279 (1990), Springer ·Zbl 0784.93048
[22]Eppler, K.; Harbrecht, H., On a Kohn-Vogelius like formulation of free boundary problems, Computational Optimization and Applications, 52, 1, 69-85 (2012) ·Zbl 1258.49069 ·doi:10.1007/s10589-010-9345-3
[23]Bacani, J. B.; Peichl, G. H.; Mohapatra, R. N.; Giri, D.; Saxena, P. K.; Srivastava, P. D., Solving the exterior Bernoulli problem using the shape derivative approach, Mathematics and Computing 2013. Mathematics and Computing 2013, Springer Proceedings in Mathematics & Statistics, 91, 251-269 (2014), New Delhi, India: Springer, New Delhi, India
[24]Tiihonen, T., Shape optimization and trial methods for free boundary problems, RAIRO: Modélisation Mathématique et Analyse Numérique, 31, 7, 805-825 (1997) ·Zbl 0891.65131
[25]Bacani, J. B.; Peichl, G. H., The second-order shape derivative of kohn-vogelius-type cost functional using the boundary differentiation approach, Mathematics, 2, 4, 196-217 (2014) ·Zbl 1321.49073 ·doi:10.3390/math2040196
[26]Delfour, M. C.; Zolésio, J.-P., Velocity method and Lagrangian formulation for the computation of the shape Hessian, SIAM Journal on Control and Optimization, 29, 6, 1414-1442 (1991) ·Zbl 0747.49007 ·doi:10.1137/0329072
[27]Haslinger, J.; Ito, K.; Kozubek, T.; Kunisch, K.; Peichl, G., On the shape derivative for problems of Bernoulli type, Interfaces and Free Boundaries, 11, 2, 317-330 (2009) ·Zbl 1178.49055 ·doi:10.4171/ifb/213
[28]Sokolowski, J.; Zolésio, J.-P., Introduction to Shape Optimization (1991), Berlin, Germany: Springer, Berlin, Germany
[29]Bacani, J. B., Methods of shape optimization in free boundary problems [Ph.D. thesis] (2013), Graz, Austria: Karl-Franzens-Universität Graz, Graz, Austria
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp