47L10 | Algebras of operators on Banach spaces and other topological linear spaces |
03E15 | Descriptive set theory |
47L30 | Abstract operator algebras on Hilbert spaces |
46L80 | \(K\)-theory and operator algebras (including cyclic theory) |
[1] | Bratteli, Ola, Inductive limits of finite dimensional \(C^{\ast } \)-algebras, Trans. Amer. Math. Soc., 171, 195-234 (1972) ·Zbl 0264.46057 |
[2] | Blecher, David P.; Le Merdy, Christian, Operator algebras and their modules{\textemdash }an operator space approach, London Mathematical Society Monographs. New Series 30 (2004), Oxford University Press: Oxford:Oxford University Press ·Zbl 1061.47002 |
[3] | Daws, Matthew, \(p\)-operator spaces and Fig\`a-Talamanca-Herz algebras, J. Operator Theory, 63, 1, 47-83 (2010) ·Zbl 1199.46125 |
[4] | Elliott, George A., On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra, 38, 1, 29-44 (1976) ·Zbl 0323.46063 |
[5] | Farah, Ilijas, A dichotomy for the Mackey Borel structure. Proceedings of the 11th Asian Logic Conference, 86-93 (2012), World Sci. Publ., Hackensack, NJ ·Zbl 1284.03228 ·doi:10.1142/9789814360548\_0005 |
[6] | Foreman, Matthew; Weiss, Benjamin, An anti-classification theorem for ergodic measure preserving transformations, J. Eur. Math. Soc. (JEMS), 6, 3, 277-292 (2004) ·Zbl 1063.37004 |
[7] | Glimm, James G., On a certain class of operator algebras, Trans. Amer. Math. Soc., 95, 318-340 (1960) ·Zbl 0094.09701 |
[8] | Gardella, Eusebio; Lupini, Martino, Representations of \'{e}tale groupoids on {\(L^p\)}-spaces, arXiv:1408.3752 (2014) ·Zbl 06769054 |
[9] | Hjorth, Greg, Non-smooth infinite-dimensional group representations (1997) |
[10] | Hjorth, Greg, Classification and orbit equivalence relations, Mathematical Surveys and Monographs 75, xviii+195 pp. (2000), American Mathematical Society, Providence, RI ·Zbl 0942.03056 |
[11] | Hjorth, Greg, Measuring the classification difficulty of countable torsion-free abelian groups, Rocky Mountain J. Math.. Proceedings of the Second Honolulu Conference on Abelian Groups and Modules (Honolulu, HI, 2001), 32, 4, 1267-1280 (2002) ·Zbl 1040.20045 ·doi:10.1216/rmjm/1181070022 |
[12] | Kerr, David; Li, Hanfeng; Pichot, Mika{\"e}l, Turbulence, representations, and trace-preserving actions, Proc. Lond. Math. Soc. (3), 100, 2, 459-484 (2010) ·Zbl 1192.46063 ·doi:10.1112/plms/pdp036 |
[13] | Kerr, David; Lupini, Martino; Phillips, N. Christopher, Borel complexity and automorphisms of {C}*-algebras, Journal of Functional Analysis ·Zbl 1327.46059 |
[14] | Kechris, A. S.; Sofronidis, N. E., A strong generic ergodicity property of unitary and self-adjoint operators, Ergodic Theory Dynam. Systems, 21, 5, 1459-1479 (2001) ·Zbl 1062.47514 ·doi:10.1017/S0143385701001705 |
[15] | Lupini, Martino, Unitary equivalence of automorphisms of separable \({\rm C}^*\)-algebras, Adv. Math., 262, 1002-1034 (2014) ·Zbl 1291.03088 ·doi:10.1016/j.aim.2014.05.022 |
[16] | Marker, David, Model theory, Graduate Texts in Mathematics 217, viii+342 pp. (2002), Springer-Verlag, New York ·Zbl 1003.03034 |
[17] | Phillips, N. Christopher, Analogs of {C}untz algebras on {\(L^p\)} spaces, arXiv:1201.4196 (2012) |
[18] | Phillips, N. Christopher, Crossed products of {\(L^p\)} operator algebras and the {K}-theory of {C}untz algebras on {\(L^p\)} spaces, arXiv:1309.6406 (2013) |
[19] | Phillips, N. Christopher, Isomorphism, nonisomorphism, and amenability of {\(L^p\)} {UHF} algebras, arXiv:1309.3694 (2013) |
[20] | Phillips, N. Christopher, Simplicity of {UHF} and {C}untz algebras on {\(L^p\)}-spaces, arXiv:1309.0115 (2013) |
[21] | Phillips, N. Christopher; Viola, Maria Grazia, \(L^p\) analogs of {AF} algebras ·Zbl 07301539 |
[22] | Sasyk, Rom\'{a}n; T{\"{o}}rnquist, Asger, The classification problem for von {N}eumann factors, Journal of Functional Analysis, 256, 8, 2710- 2724 (2009-04) ·Zbl 1173.46042 |
[23] | Sasyk, Rom{\'a}n; T{\"o}rnquist, Asger, Turbulence and {A}raki-{W}oods factors, Journal of Functional Analysis, 259, 9, 2238- 2252 (2010) ·Zbl 1208.46059 |