[1] | D. Feng and H. Hu, ”Dimension theory of iterated function systems,” Comm. Pure Appl. Math., vol. 62, iss. 11, pp. 1435-1500, 2009. ·Zbl 1230.37031 ·doi:10.1002/cpa.20276 |
[2] | Y. Peres and B. Solomyak, ”Problems on self-similar sets and self-affine sets: an update,” in Fractal Geometry and Stochastics, II, Basel: Birkhäuser, 2000, vol. 46, pp. 95-106. ·Zbl 0946.28003 |
[3] | A. M. Garsia, ”Arithmetic properties of Bernoulli convolutions,” Trans. Amer. Math. Soc., vol. 102, pp. 409-432, 1962. ·Zbl 0103.36502 ·doi:10.2307/1993615 |
[4] | H. Furstenberg, ”Intersections of Cantor sets and transversality of semigroups,” in Problems in Analysis, Princeton, N.J.: Princeton Univ. Press, 1970, pp. 41-59. ·Zbl 0208.32203 |
[5] | H. Furstenberg, ”Ergodic fractal measures and dimension conservation,” Ergodic Theory Dynam. Systems, vol. 28, iss. 2, pp. 405-422, 2008. ·Zbl 1154.37322 ·doi:10.1017/S0143385708000084 |
[6] | R. Kenyon, ”Projecting the one-dimensional Sierpinski gasket,” Israel J. Math., vol. 97, pp. 221-238, 1997. ·Zbl 0871.28006 ·doi:10.1007/BF02774038 |
[7] | G. Świcatek and J. J. P. Veerman, ”On a conjecture of Furstenberg,” Israel J. Math., vol. 130, pp. 145-155, 2002. ·Zbl 1022.37016 ·doi:10.1007/BF02764075 |
[8] | Y. Peres and W. Schlag, ”Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions,” Duke Math. J., vol. 102, iss. 2, pp. 193-251, 2000. ·Zbl 0961.42007 ·doi:10.1215/S0012-7094-00-10222-0 |
[9] | J. Bourgain, ”The discretized sum-product and projection theorems,” J. Anal. Math., vol. 112, pp. 193-236, 2010. ·Zbl 1234.11012 ·doi:10.1007/s11854-010-0028-x |
[10] | M. Hochman, Self-similar sets with overlaps and sumset phenomena for entropy, the multidimensional case, 2012. |
[11] | M. Pollicott and K. Simon, ”The Hausdorff dimension of \(\lambda\)-expansions with deleted digits,” Trans. Amer. Math. Soc., vol. 347, iss. 3, pp. 967-983, 1995. ·Zbl 0831.28005 ·doi:10.2307/2154881 |
[12] | B. Solomyak, ”On the random series \(\sum\pm\lambda^n\) (an Erd\Hos problem),” Ann. of Math., vol. 142, iss. 3, pp. 611-625, 1995. ·Zbl 0837.28007 ·doi:10.2307/2118556 |
[13] | P. Shmerkin and B. Solomyak, ”Zeros of \(\{-1,0,1\}\) power series and connectedness loci for self-affine sets,” Experiment. Math., vol. 15, iss. 4, pp. 499-511, 2006. ·Zbl 1122.30002 ·doi:10.1080/10586458.2006.10128977 |
[14] | P. Erdös, ”On a family of symmetric Bernoulli convolutions,” Amer. J. Math., vol. 61, pp. 974-976, 1939. ·Zbl 0022.35402 ·doi:10.2307/2371641 |
[15] | P. Erdös, ”On the smoothness properties of a family of Bernoulli convolutions,” Amer. J. Math., vol. 62, pp. 180-186, 1940. ·Zbl 0022.35403 ·doi:10.2307/2371446 |
[16] | Y. Peres, W. Schlag, and B. Solomyak, ”Sixty years of Bernoulli convolutions,” in Fractal Geometry and Stochastics, II, Basel: Birkhäuser, 2000, vol. 46, pp. 39-65. ·Zbl 0961.42006 |
[17] | J. C. Alexander and J. A. Yorke, ”Fat baker’s transformations,” Ergodic Theory Dynam. Systems, vol. 4, iss. 1, pp. 1-23, 1984. ·Zbl 0553.58020 ·doi:10.1017/S0143385700002236 |
[18] | F. Przytycki and M. Urbański, ”On the Hausdorff dimension of some fractal sets,” Studia Math., vol. 93, iss. 2, pp. 155-186, 1989. ·Zbl 0691.58029 |
[19] | M. Keane, M. Smorodinsky, and B. Solomyak, ”On the morphology of \(\gamma\)-expansions with deleted digits,” Trans. Amer. Math. Soc., vol. 347, iss. 3, pp. 955-966, 1995. ·Zbl 0834.11033 ·doi:10.2307/2154880 |
[20] | M. Nicol, N. Sidorov, and D. Broomhead, ”On the fine structure of stationary measures in systems which contract-on-average,” J. Theoret. Probab., vol. 15, iss. 3, pp. 715-730, 2002. ·Zbl 1026.28006 ·doi:10.1023/A:1016224000145 |
[21] | Y. Peres, K. Simon, and B. Solomyak, ”Absolute continuity for random iterated function systems with overlaps,” J. London Math. Soc., vol. 74, iss. 3, pp. 739-756, 2006. ·Zbl 1122.37018 ·doi:10.1112/S0024610706023258 |
[22] | A. M. Garsia, ”Entropy and singularity of infinite convolutions,” Pacific J. Math., vol. 13, pp. 1159-1169, 1963. ·Zbl 0126.14901 ·doi:10.2140/pjm.1963.13.1159 |
[23] | P. Shmerkin, ”On the exceptional set for absolute continuity of Bernoulli convolutions,” Geom. Funct. Anal., vol. 24, pp. 946-958. ·Zbl 1305.28012 ·doi:10.1007/s00039-014-0285-4 |
[24] | T. Tao and V. Vu, Additive Combinatorics, Cambridge: Cambridge Univ. Press, 2006, vol. 105. ·Zbl 1127.11002 ·doi:10.1017/CBO9780511755149 |
[25] | T. Tao, ”Sumset and inverse sumset theory for Shannon entropy,” Combin. Probab. Comput., vol. 19, iss. 4, pp. 603-639, 2010. ·Zbl 1239.11015 ·doi:10.1017/S0963548309990642 |
[26] | J. Bourgain, N. Katz, and T. Tao, ”A sum-product estimate in finite fields, and applications,” Geom. Funct. Anal., vol. 14, iss. 1, pp. 27-57, 2004. ·Zbl 1145.11306 ·doi:10.1007/s00039-004-0451-1 |
[27] | N. H. Katz and T. Tao, ”Some connections between Falconer’s distance set conjecture and sets of Furstenburg type,” New York J. Math., vol. 7, pp. 149-187, 2001. ·Zbl 0991.28006 |
[28] | J. Bourgain, ”On the Erd\Hos-Volkmann and Katz-Tao ring conjectures,” Geom. Funct. Anal., vol. 13, iss. 2, pp. 334-365, 2003. ·Zbl 1115.11049 ·doi:10.1007/s000390300008 |
[29] | M. Hochman and P. Shmerkin, Equidistribution from fractals, 2011. ·Zbl 1409.11054 |
[30] | P. ErdHos and B. Volkmann, ”Additive Gruppen mit vorgegebener Hausdorffscher Dimension,” J. Reine Angew. Math., vol. 221, pp. 203-208, 1966. ·Zbl 0135.10202 |
[31] | T. W. Körner, ”Hausdorff dimension of sums of sets with themselves,” Studia Math., vol. 188, iss. 3, pp. 287-295, 2008. ·Zbl 1200.28007 ·doi:10.4064/sm188-3-4 |
[32] | J. Schmeling and P. Shmerkin, ”On the dimension of iterated sumsets,” in Recent Developments in Fractals and Related Fields, Boston, MA: Birkhäuser, 2010, pp. 55-72. ·Zbl 1216.28011 ·doi:10.1007/978-0-8176-4888-6_5 |
[33] | C. Esseen, ”On the Liapounoff limit of error in the theory of probability,” Ark. Mat. Astr. Fys., vol. 28A, iss. 9, p. 19, 1942. ·Zbl 0027.33902 |
[34] | V. A. Kauimanovich and A. M. Vershik, ”Random walks on discrete groups: boundary and entropy,” Ann. Probab., vol. 11, iss. 3, pp. 457-490, 1983. ·Zbl 0641.60009 ·doi:10.1214/aop/1176993497 |
[35] | M. Madiman, ”On the entropy of sums,” in Information Theory Workshop, 2008. ITW \('\)08, , 2008, pp. 303-307. ·doi:10.1109/ITW.2008.4578674 |
[36] | M. Madiman, A. W. Marcus, and P. Tetali, ”Entropy and set cardinality inequalities for partition-determined functions,” Random Structures Algorithms, vol. 40, iss. 4, pp. 399-424, 2012. ·Zbl 1244.05024 ·doi:10.1002/rsa.20385 |